
www.manaraa.com

Georgia State University
ScholarWorks @ Georgia State University

Computer Information Systems Dissertations Department of Computer Information Systems

12-5-2007

Improving Practices in a Small Software Firm: An
Ambidextrous Perspective
Nannette Napier

Follow this and additional works at: http://scholarworks.gsu.edu/cis_diss

This Dissertation is brought to you for free and open access by the Department of Computer Information Systems at ScholarWorks @ Georgia State
University. It has been accepted for inclusion in Computer Information Systems Dissertations by an authorized administrator of ScholarWorks @
Georgia State University. For more information, please contact scholarworks@gsu.edu.

Recommended Citation
Napier, Nannette, "Improving Practices in a Small Software Firm: An Ambidextrous Perspective." Dissertation, Georgia State
University, 2007.
http://scholarworks.gsu.edu/cis_diss/18

http://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcis_diss%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cis_diss?utm_source=scholarworks.gsu.edu%2Fcis_diss%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cis?utm_source=scholarworks.gsu.edu%2Fcis_diss%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cis_diss?utm_source=scholarworks.gsu.edu%2Fcis_diss%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

www.manaraa.com

Permission to Borrow

In presenting this dissertation as a partial fulfillment of the requirements for an advanced degree

from Georgia State University, I agree that the Library of the University shall make it available

for inspection and circulation in accordance with its regulations governing materials of this type.

I agree that permission to quote from, or to publish this dissertation may be granted by the author

or, in his/her absence, the professor under whose direction it was written or, in his absence, by

the Dean of the Robinson College of Business. Such quoting, copying, or publishing must be

solely for scholarly purposes and does not involve potential financial gain. It is understood that

any copying from or publication of this dissertation which involves potential gain will not be

allowed without written permission of the author.

 Nannette Patterson Napier

www.manaraa.com

iv

Notice to Borrowers

All dissertations deposited in the Georgia State University Library must be used only in

accordance with the stipulations prescribed by the author in the preceding statement.

The author of this dissertation is:

Name: Nannette Napier

Address: 2423 Idlewood Way, Snellville, Georgia 30078

The director of this dissertation is:

Name: Dr. Lars Mathiassen

Department: Center for Process Innovation

Address: 4
th

 Floor, 35 Broad Street NW, Atlanta, Georgia 30303

Users of this dissertation not regularly enrolled as students at Georgia State University are

required to attest acceptance of the preceding stipulations by signing below. Libraries borrowing

this dissertation for the use of their patrons are required to see that each user records here the

information requested.

Name of User Address Date

www.manaraa.com

iv

IMPROVING PRACTICES IN

A SMALL SOFTWARE FIRM:

AN AMBIDEXTROUS PERSPECTIVE

BY

NANNETTE PATTERSON NAPIER

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree

of

Doctor of Philosophy

in the Robinson College of Business

of

Georgia State University

GEORGIA STATE UNIVERSITY

ROBINSON COLLEGE OF BUSINESS

2007

www.manaraa.com

iv

Copyright by

Nannette Patterson Napier

2007

www.manaraa.com

iv

ACCEPTANCE

This dissertation was prepared under the direction of the candidate‟s Dissertation Committee. It

has been approved and accepted by all members of that committee, and it has been accepted in

partial fulfillment of the requirements for the degree of Doctor in Philosophy in Business

Administration in the Robinson College of Business of Georgia State University.

 Dean: H. Fenwick Huss

 Robinson College of Business

Dissertation Committee:

Chair: Dr. Lars Mathiassen

Dr. Sandeep Purao

Dr. Bala Ramesh

Dr. Vijay Vaishnavi

www.manaraa.com

6

ACKNOWLEGEMENTS

Although the title page of this dissertation contains one name, this work would be

impossible without the efforts of the many people who have supported me throughout this

journey. I‟d like to begin by acknowledging the tireless work and patience of my dissertation

supervisor, Dr. Lars Mathiassen. At various times through the years, he has served as critic,

counselor, copy editor, and mentor. He could always be counted upon to give 100% to our

efforts, respond quickly to my written drafts, see the positive when I was in doubt, and challenge

me to clarify my thoughts and sharpen my arguments. Through this relationship, I have learned

valuable lessons about conducting and writing rigorous, relevant research, and I look forward to

continued collaboration in the future.

I also want to express my sincere gratitude to Sandeep Purao, Bala Ramesh, and Vijay

Vaishnavi who served on my dissertation committee. At several critical moments, they stepped

in to provide important assistance so that this dissertation could advance to the next stage. In

addition, this research would not have been possible without the help of the employees of

TelSoft. To maintain the anonymity of the organization, I will withhold names; however, I

especially want to thank the managers represented as part of the Problem Solving Team and

Software Coordination Group who trusted us to observe and intervene in their daily operations.

Over the years in the program, I have had the pleasure of collaborating with a number of

researchers. I would first like to thank the co-authors who have worked with me on the papers

that form Part II of this dissertation: Roy Johnson, Jonathan Kim, and Dan Robey. Their

contributions have greatly improved the quality of the work submitted, and I look forward to

working with them on furthering this work. I am particularly indebted to Roy Johnson for his

sponsorship through the GAANN grant which provided financial support through the first three

www.manaraa.com

 7

years of the program. I would next like to thank the researchers I have collaborated with on other

research papers (listed alphabetically): Lily Chen, Yi Ding, Steve Du, Mark Keil, Melody

Moore-Jackson, Adriane Randolph, Veda Storey, Carl Stucke, Hiro Takeda, and Felix Tan. In

various ways, you have each served as mentors and I have learned from each of you something

about how to be a better scholar. Thank you.

Many others inside and outside of the university have played an integral role in helping

me through this experience and preparing me for a career in academia: the instructors at Georgia

State University, other CIS PhD students that arrived with me in 2003, the KPMG PhD Project,

Southern Regional Education Board (SREB), and African American Researchers in Computing

Sciences (AARCS). Last but not least, I want to acknowledge and thank my family for their

acceptance, support, and encouragement as I pursued this goal: my parents (James and Irma

Patterson), husband (Junior Napier), and kids (Chantal, Sean, Alyssa, and Carlton).

www.manaraa.com

 8

ABSTRACT

IMPROVING PRACTICES IN

A SMALL SOFTWARE FIRM:

AN AMBIDEXTROUS PERSPECTIVE

By

NANNETTE PATTERSON NAPIER

AUGUST 29, 2007

Committee Chair: Dr. Lars Mathiassen

Major Department: Computer Information Systems

Despite documented best practices and specialized tools, software organizations struggle to

deliver quality software that is on time, within budget, and meets customer requirements.

Managers seeking improved software project outcomes face two dominant software paradigms

which differ in their emphasis on upfront planning, customer collaboration, and product

documentation: plan-driven and agile. Rather than promoting one approach over the other, this

research advocates improving software management practices by developing the organization‟s

ambidextrous capability. Ambidextrous organizations have the ability to simultaneously succeed

at two seemingly contradictory capabilities (e.g. discipline and agility) which leads to enhanced

organizational performance.

Overall, this study asks the question: How can an ambidextrous perspective facilitate

improvement in software practices? Driven by this question, and based on a two year action

research study at a small software firm, TelSoft, the objectives of this research are to:

1. Identify dualities involved in improving software practices

2. Design interventions based on these dualities to improve software practices

3. Explore the process of becoming an ambidextrous software organization

The resulting dissertation consists of a summary and four papers that each identify and address

particular dualities encountered during software process improvement. The first paper asserts

that both process-driven and perception-driven inquiry should be used during assessment of

software practices, presents a model that shows how this combination can occur, and

demonstrates the use of this model at TelSoft. The second paper explicates two theories for

understanding and resolving issues in requirements engineering practice – repeat-ability and

response-ability – and argues for the need to negotiate between the two. The third paper

identifies a tension between managing legacy and current processes and proposes a model for

www.manaraa.com

 9

software process reengineering, a systematic process for leveraging legacy processes created

during prior SPI efforts. Finally, the fourth paper applies the theoretical lens of ambidexterity to

understand the overall change initiative in terms of the tension between alignment and

adaptability.

The study used a variety of data sources to diagnose software practices, including semi-

structured interviews, software process documents, meeting interactions, and workshop

discussions. Subsequently, we established, facilitated, and tracked focused improvement teams in

the areas of customer relations, requirements management, quality assurance, project portfolio

management, and process management. Furthermore, we created and trained two management

teams with responsibility for ongoing management of SPI and project portfolio management

respectively. We argue that these activities improved software practices at TelSoft and provided a

stronger foundation for continuous improvement.

Keywords: Ambidexterity, software process improvement (SPI), action research, requirements

engineering assessment, action planning, software process reengineering, software management.

www.manaraa.com

 10

Table of Contents

Part I: Research Summary .. 11

Chapter 1: Research Focus ... 12

Chapter 2: Theoretical Background ... 17

Chapter 3: Research Approach ... 24

Chapter 4: Review of Results ... 36

Chapter 5: Discussion .. 44

References .. 56

Part II: Research Papers .. 62

Paper 1: Combining Perceptions and Processes ... 63

Paper 2: Negotiating Repeat-ability and Response-ability ... 78

Paper 3: Managing Legacy and Current Processes .. 102

Part III: Problem Solving Cycle .. 159

Prologue ... 160

Chapter 1: Initiating ... 162

Chapter 2: Diagnosing ... 163

Chapter 3: Intervention Cycle 1 ... 168

Chapter 4: Intervention Cycle 2 ... 173

Chapter 5: Learning ... 175

Appendix A: Comprehensive List of Problem Solving Documents ... 177

Appendix B: Problem Solving Cycle Documentation.. 182

References .. 259

www.manaraa.com

11

Part I: Research Summary

www.manaraa.com

 12

 Chapter 1: Research Focus

1.1 Research Domain

Despite documented best practices and specialized tools, software organizations struggle to

deliver quality software that is on time, within budget, and meets customer requirements. In fact,

the Standish Group (2004) reports that 53% of all information technology (IT) projects are late

or over budget; an additional 18% either fail outright or are cancelled prior to completion. All

indications are that the environment in which software is developed will continue to challenge

rather than ameliorate the situation. Increasingly, the business environment is characterized by

frequent requirements changes, rapid technological advances, and time-to-market pressures

(Ramesh, Pries-Heje et al. 2002).

Given this dismal state of affairs, what strategies should software managers use to increase the

likelihood of successful project outcomes? In general, managers face two dominant software

development and improvement paradigms which differ in their emphasis on upfront planning,

customer collaboration, and product documentation: plan-driven and agile. Plan-driven

approaches, such as the Software Capability Maturity Model (SW-CMM), Bootstrap (Kuvaja

and Bicego 1994), or SPICE (Rout 1995), emphasize discipline through documentation of

project milestones, requirements, and designs; such approaches are most appropriate for large

products and teams, mission-critical systems with stable requirements, and a culture that thrives

on order (Boehm 2002; Boehm and Turner 2004). Agile approaches, such as extreme

programming (Beck 1999), Crystal Methods (Cockburn 2000), or adaptive software development

(Highsmith 2000), emphasize responsiveness and flexibility by giving priority to people and

prototypes over processes and documentation (Agile Alliance 2001; Highsmith and Cockburn

2001); these approaches are most appropriate for small products and teams where there are

highly dynamic requirements, flexible, knowledgeable experts, and a culture that is amenable to

changing situations (Boehm 2002; Boehm and Turner 2004).

In some cases, characteristics such as team size, developer skills, company culture, and project

goals clearly indicate whether plan-driven or agile methods are more appropriate (Boehm 2002;

Boehm and Turner 2004). Increasingly, however, clear cut situations are falling way to an

environment in which managers seek the benefits of both discipline and agility and therefore

need to take advantage of techniques associated with both plan-driven and agile methods. Some

studies have examined how agile approaches can comply with the guidelines of the SW-CMM

and its successor, Capability Maturity Model Integration (CMMI) (Paulk 2001). Empirical case

studies have also begun to appear that show how this combination can occur (Baker 2005; Salo

and Abrahamsson 2005). However, the literature is only beginning to provide guidance on

combining these approaches.

The effective integration of opposing capabilities would, in effect, require software firms to

become ambidextrous. Ambidexterity is the ability to pursue simultaneously contradictory

capabilities such as exploration-exploitation (Tushman and O'Reilly III 1996), alignment-

adaptability (Gibson and Birkinshaw 2004), flexibility-efficiency (Adler, Goldoftas et al. 1999),

and flexibility-rigor (Lee, DeLone et al. 2006). Ambidextrous organizations compete by

optimizing efficiency, cost, and incremental innovation while at the same time exhibiting

flexibility, speed, and radical innovation (Tushman and O'Reilly III 1996). Moreover, studies

www.manaraa.com

 13

have begun to provide empirical support for the “ambidexterity hypothesis” (i.e. that increased

ambidexterity leads to enhanced organizational performance) (Gibson and Birkinshaw 2004; He

and Wong 2004). In the context of global information systems (IS) project teams, Lee et al.

(2006) found that successful teams were ambidextrous, using coping strategies that exhibited

both flexibility and rigor. Thus, focusing on becoming ambidextrous could serve as an

alternative means for software organizations to improve.

Although the anticipated benefits are significant, achieving ambidexterity is by no means

straightforward. Each contradictory capability requires different and often incongruent systems,

processes, and beliefs, thereby creating conflicts and dilemmas that are challenging to resolve

(Tushman and O'Reilly III 1996; Floyd and Lane 2000; Gibson and Birkinshaw 2004). How,

then, can managers design and develop ambidextrous organizations? Within the organizational

management literature, two general approaches have been suggested: structural and contextual

ambidexterity. With structural ambidexterity, managers create separate business units within the

organization which specialize in one required capability, and the top management team bears

responsibility for coordinating contributions of the two units to achieve ambidexterity at the

organizational level (Gibson and Birkinshaw 2004). With contextual ambidexterity, the

responsibility for achieving ambidexterity is shared by members within a single business unit. To

create a high performing business unit, the top management team is advised to create an

organizational context which facilitates both alignment and adaptability through appropriate

performance management and social support (Gibson and Birkinshaw 2004).

The IS literature on ambidextrous software organizations lags behind the organizational

management literature on ambidexterity in at least two important ways. First, IS researchers are

still at the definitional stages of understanding the competing capabilities that software

organizations must master to become ambidextrous, such as flexibility-rigor (Lee, DeLone et al.

2006; Lee, DeLone et al. 2007) and agility-discipline (Boehm 2002; Boehm and Turner 2004).

More work can be done to clarify relevant dualities which can then form the foundation for

future research. Second, IS researchers have chiefly adopted the language of structural

ambidexterity in designing ambidextrous solutions. For example, consistent with structural

ambidexterity, Vinekar et al. (2006) define ambidextrous systems development organizations as

consisting of a traditional, plan-driven subunit and an agile subunit. However, IS researchers

have only briefly mentioned contextual ambidexterity as an appropriate means for becoming

ambidextrous. These two factors highlight the need for the IS literature to deepen its appreciation

for the dualities associated with ambidextrous software organizations and to broaden its

understanding of the ways in which ambidexterity can be achieved.

1.2 Research Design

Overall, this study asks the question: How can an ambidextrous perspective facilitate

improvement in software practices? Accordingly, this research examines the dualities associated

with ambidexterity, the design of interventions to resolve these dualities, and the process of

becoming ambidextrous. Hence, the following research objectives are investigated:

1. Identify dualities involved in improving software practices

2. Design interventions based on these dualities to improve software practices

3. Explore the process of becoming an ambidextrous software organization

www.manaraa.com

 14

Taking an ambidextrous perspective, this work embraces the idea of duality. A duality highlights

two elements that at the same time exhibit tension and complement each other:

“A duality is a single conceptual unit that is formed by two inseparable and

mutually constitutive elements whose inherent tension and complementarity give

the concept richness and dynamism.” (Wenger 1998, p. 66)

Each element of the duality can be present, but more or less to some extent. By putting them

together, we acknowledge that there is a relationship between the two and can focus on their

interactions (e.g. how discipline influences agility and vice versa).

To meet these research objectives, the Center for Process Innovation (CEPRIN) at Georgia State

University (GSU) initiated an action research project with TelSoft, a small software company

wanting to improve its software practices. Small software organizations, independent companies

consisting of less than 50 software developers and projects of fewer than 20 people (Software

Engineering Institute 2006), represent an excellent setting for studying dualities involved in

improving software practices as well as ambidexterity. Key characteristics of small software

organizations include reliance on a few projects servicing known customers, overburdened

employees performing multiple roles, and a tendency to rely on individual judgment over

standardized processes (Horvat, Rozman et al. 2000). Furthermore, the culture in these

companies attracts employees with a desire for autonomy and a disdain against heavy standards

(Software Engineering Institute 2006). To be successful, these organizations must be agile and

adapt quickly to environmental changes and frequent customer requests (Ramesh, Pries-Heje et

al. 2002; Mathiassen and Vainio 2007). At the same time, they can benefit from increasing

discipline and alignment across all employees; if processes are left undocumented and to the

discretion of individual preferences, practices may not be efficient and important knowledge may

be lost when individuals decide to leave the organization. Therefore, managers within small

software organizations must learn to effectively balance discipline and agility while making

adjustments for the specific context in which they operate (Boehm and Turner 2004).

The overall research methodology is collaborative practice research (CPR), a form of action

research that emphasizes methodological pluralism and collaboration between researchers and

practitioners (Mathiassen 2002). The goal of action research is to “contribute both to the

practical concerns of people in an immediate problematic situation and to the goals of social

science by joint collaboration” (Rapoport 1970). Action research can hence be conceptualized as

containing two concurrent and interacting learning cycles – a problem solving cycle that

addresses the practical concerns and a research cycle that addresses the need for scientific

knowledge on the part of the researchers (McKay and Marshall 2001). Over the two years of this

collaboration, a number of interventions were designed to increase ambidextrous capability and

improve organizational performance. Through close collaboration with our industry partner,

TelSoft, we used theory to influence the organizational change agenda and to observe the process

of change over time. The final phase of the research project evaluated the effectiveness and

impact of these interventions. Overall, the collected process data (Langley 1999) permitted

investigation of becoming a more ambidextrous software organization.

www.manaraa.com

 15

TelSoft was founded in 1971, with the mission to be a premier software services firm in the

telecommunications and utility industries. The company has approximately 500 employees with

fewer than 50 dedicated to building and customizing geographic information systems (GIS)

software. TelSoft emerged as an ideal research site because they had many troubled software

projects: software releases were shipped late, ran over budget, and contained deviations from

agreed upon requirements. TelSoft‟s customers frequently requested requirements changes;

however, important stakeholders within TelSoft were not always informed of these changes in a

timely fashion. Because the company attributed these problems to issues with its processes for

discovering, managing, and changing requirements, TelSoft‟s management initially requested

that we focus on the requirements engineering (RE) process. However, when the diagnosis

revealed problems in areas such as software process management, project portfolio management,

and software vision management, we expanded our research interests to focus more broadly on

improving software practices.

To guide the activities in the problem solving cycle, we adopted the IDEAL model (McFeeley

1996) – an acronym for Initiating, Diagnosing, Establishing, Acting, and Learning – to improve

software practices. Each phase of this process provides an opportunity to make research

contributions (e.g., identifying problems not sufficiently addressed in the literature, proposing

methods for solving those problems, and studying change processes over time). During the

diagnosing phase, we identified alternative assessment practices and proposed a method for

combining process-based and perception-based evaluation. In support of the establishing phase,

we explored the assumptions underlying the tensions of plan-driven and agile approaches to RE.

During the acting phase, we proposed a process for integrating legacy software processes into

software process improvement (SPI) by establishing a systematic process management

discipline. During the learning phase, we reflected on the impact of the overall change process

through the lens of contextual ambidexterity. We argue that these activities improved software

practices at TelSoft and provided a stronger foundation for continuous improvement.

1.3 Dissertation Outline

The dissertation consists of three parts. In Part I Research Summary, we describe the objectives

of the study in chapter 1, introduce the research domain in chapter 2, detail the research

methodology in chapter 3, review the main results in chapter 4, and summarize the contributions

in chapter 5.

In Part II Research Papers, we present the results from the research cycle: the full text of the

four papers that comprise the dissertation. Each research paper selects a specific area within the

domain of improving software practices, reviews relevant literature, uses data collected from one

or more phases of the action research cycle, applies a specific data analysis method, and

contributes to both research and practice as summarized in Table 1.

www.manaraa.com

 16

Table 1: Summary of Research Contributions

Research

Paper
Short Description Main Contribution

Paper 1
Combining Perceptions

and Processes

Model for assessing RE practice which values

insights from both process models and perceptions

of key stakeholders (Napier, Mathiassen et al.

2006)

Paper 2

Negotiating Repeat-ability

and Response-ability

Two theories for understanding and resolving

issues in RE practice: repeat-ability and response-

ability (Napier, Mathiassen et al. 2006)

Paper 3
Managing Legacy

and Current Processes

Model for “Software Process Reengineering” that

allows organizations to leverage legacy software

processes when reengaging in improvement after

initial failure (Napier, Kim et al. under review)

Paper 4 Becoming Ambidextrous

Application of contextual ambidexterity to

understand the overall change initiative in terms of

the tension between alignment and adaptability

(Napier, Mathiassen et al. under review)

In Part III Problem Solving Cycle, we document the problem solving efforts at TelSoft, including

the initial memorandum of agreement and the interview guides used during diagnosis and

learning phases. A comprehensive list of documents produced during the collaboration is also

provided.

www.manaraa.com

17

Chapter 2: Theoretical Background

In this chapter, we summarize the current literature on ambidexterity and relate it to the specific

challenges of small software organizations.

2.1 Ambidexterity
In this section, we review the organizational management literature on dualities associated with

ambidexterity, proposed designs for achieving ambidexterity, and the process for increasing

ambidextrous capability within an organization.

Dualities. For many years, researchers have been captivated by the tension associated with

exploitation and exploration. Exploitation is associated with incremental improvement, learning

through local search, refining existing products, and reuse of existing routines whereas

exploration is associated with more radical improvement, learning through experimenting with

technologies and ideas from outside the organization, and new product development (March

1991; Baum, Li et al. 2000; Benner and Tushman 2003). In short, exploitation is learning along

the existing trajectory while exploration is learning that follows a new trajectory (Gupta, Smith

et al. 2006).

The relative investment made in exploitation and exploration is a strategic choice with no

predefined answer. On the one hand, organizations emphasizing exploitation can fall into a

competency trap in which they get better and better at the same thing without being able to move

to the next stage; whereas, organizations emphasizing exploration can fall into a failure trap in

which they are unable to fully capitalize on the innovations they start (March 1991). To avoid the

negatives of either one, organizations have been advised to strive for ambidexterity – the ability

to simultaneously succeed at two seemingly contradictory capabilities such as the dualities of

exploration-exploitation (Tushman and O'Reilly III 1996), alignment-adaptability (Gibson and

Birkinshaw 2004), and flexibility-efficiency (Adler, Goldoftas et al. 1999).

Studies have begun to provide empirical support for the positive relationship between

ambidexterity and organizational performance. Based upon surveys of 4,195 individuals within

41 business units of ten multinational firms, Gibson and Birkinshaw (2004) found a positive and

significant correlation between ambidexterity and organizational performance. Focusing on the

context of technological innovations, He and Wong (2004) found that the interaction of

explorative and exploitative innovation strategies was positively related to sales growth. While

some argue that there are contexts in which ambidexterity may not be necessary (Gupta, Smith et

al. 2006), these results demonstrate the benefits of ambidexterity.

Design. Various definitions related to ambidexterity have been offered in the literature (see

Table 2 for a summary). A business unit‟s ambidexterity has been described as having high

levels of both exploratory and exploitative innovations (Jansen, van Den Bosch et al. 2005).

Ambidextrous organizations are expected to compete successfully both in mature markets with

existing customers by optimizing efficiency, cost, and incremental innovation as well in

emerging markets with new customers by exhibiting flexibility, speed, and radical innovation

(Tushman and O'Reilly III 1996). Recently, Gibson and Birkinshaw (2004) have distinguished

www.manaraa.com

 18

between structural and contextual ambidexterity in terms of the strategies used for achieving

success at the dual capabilities of A and B.

Table 2: Definitions of Ambidexterity

Term Definition

Ambidextrous

organizational

form

“Composed of multiple tightly coupled subunits that are themselves

loosely coupled with each other. Within subunits, the tasks, culture,

individuals, and organizational arrangements are consistent, but

across subunits tasks and culture are inconsistent and loosely

coupled.” (Benner and Tushman 2003, p. 247)

Ambidextrous

organizations

[Have] “the ability to simultaneously pursue both incremental and

discontinuous innovation and change” (Tushman and O'Reilly III

1996, p. 24)

Business unit‟s

ambidexterity

“Units characterized by high levels of exploratory and exploitative

innovations” (Jansen, van Den Bosch et al. 2005, p. 352)

Contextual

ambidexterity

“The behavioral capacity to simultaneously demonstrate alignment

and adaptability across an entire business unit” (Gibson and

Birkinshaw 2004, p. 209)

Structural

ambidexterity

“Organizations manage trade-offs between conflicting demands by

putting in place „dual structures‟, so that certain business units – or

groups within business units – focus on alignment, while others

focus on adaptation (Duncan 1976)” (quoted in Gibson and

Birkinshaw 2004, p. 209)

With structural ambidexterity managers create separate business units within the organization,

each with a specialization in either A or B (Gibson and Birkinshaw 2004), see Figure 1. The top

management team (TMT) ensures coordination between the two units such that the most

promising innovations from the exploratory unit can mature and be effectively incorporated by

the organization‟s exploitative unit. The rationale for this separation is that the systems,

processes, and beliefs required for exploration and exploitation are too incongruent to be found

within the same unit. Organizations designed with this structure have been described as having

an ambidextrous organizational form (Benner and Tushman 2002). Although case studies of

various multinational organizations have illustrated the benefits of structural ambidexterity

(Birkinshaw and Gibson 2004; O'Reilly III and Tushman 2004), this approach may not be

suitable for companies with limited resources and dynamic environments.

www.manaraa.com

 19

Figure 1: Structural Ambidexterity (Gibson and Birkinshaw 2004)

Structural Ambidexterity View

Organization Level

Ambidexterity

Success at

Capability A

Sub-

Unit 1

Specialize in Capability A

Success at

Capability B
Sub-

Unit 2

Specialize in Capability B

With contextual ambidexterity the responsibility of achieving ambidexterity is shared amongst

individual employees within a specific business unit, see Figure 2. Contextual ambidexterity

requires simultaneous success at both alignment – capacity of employees within the business unit

to work toward common goals – and adaptability – capacity of the business unit to quickly

change in response to dynamic market conditions (Gibson and Birkinshaw 2004).This

perspective recognizes that it is the day-to-day decisions of individual employees that shape

alignment and, therefore, the TMT is charged with creating a facilitating environment which will

lead to contextual ambidexterity. Following Ghoshal and Bartlett (1994), Gibson and Birkinshaw

(2004) identify salient aspects of the organization context which can be manipulated:

performance management and social support. The performance management context represents

systems, processes, and beliefs related to meeting performance objectives set by the

organization‟s management (Gibson and Birkinshaw 2004). Discipline is an attribute that

encourages people to voluntarily meet those objectives whereas stretch is an attribute that

encourages people to strive for even more ambitious goals (Ghoshal and Bartlett 1994). The

social support context represents systems, processes, and beliefs associated with member

relationships (Gibson and Birkinshaw 2004). Trust is an attribute of the organizational context

that encourages people to rely on one another whereas support is an attribute that empowers

people to lend assistance to others (Ghoshal and Bartlett 1994).

Figure 2: Contextual Ambidexterity (Gibson and Birkinshaw)

Contextual Ambidexterity View

Unit Level

Ambidexterity

Success at

Alignment

and

Adaptability

Individual

Actions

supports

Performance Mgt.

• Discipline

• Stretch

Social Support

• Support

• Trust

build

Gibson and Birkinshaw, 2004

Organization

Context

www.manaraa.com

 20

From this review, we learn that ambidexterity requires more than just “success at A” plus

“success at B.” It also requires the ability to coordinate and integrate the two. From the

perspective of structural ambidexterity, integration is the responsibility of TMT allowing

subunits within an organization to specialize and focus on specific concerns (Duncan 1976;

Gibson and Birkinshaw 2004; Jansen, van Den Bosch et al. 2005). From the perspective of

contextual ambidexterity, each individual employee is responsible for figuring out how to

coordinate and integrate a concern for A with a concern for B (Gibson and Birkinshaw 2004).

Process. The process of building contextual ambidexterity is described as “complex, causally

ambiguous, widely dispersed, and quite time-consuming” (Gibson and Birkinshaw 2004, p. 209-

210). As we found no empirical studies that attempt to further describe this process, many

practical questions related to achieving ambidexterity have not been addressed. Specifically, how

can organizations develop and engage in ambidextrous practices and create and sustain

organizational contexts that facilitate such practices? What enablers and barriers can managers

expect and how might those be leveraged and resolved, respectively? How long does it take to

become ambidextrous, and are there specific shortcuts which enable this process to go more

quickly? Birkinshaw and Gibson (2004) provide some general lessons on where and how

organizations can start developing ambidextrous capabilities: diagnose the organizational

context; change key aspects of the context; ensure communication about ambidexterity

throughout the organization; consider contextual and structural ambidexterity; and empower

employees throughout the organization to participate. While these lessons serve as a starting

point for understanding how to develop ambidexterity, much more is needed to understand how

context and managerial practices interact over time and shape each other as organizations strive

to become ambidextrous.

Most research focuses on measurement issues and supporting the relationship between

ambidexterity and organizational performance. Researchers typically measure ambidexterity by

measuring each part of a duality separately and then aggregating by multiplying the two together

(Gibson and Birkinshaw 2004; Jansen, van Den Bosch et al. 2005), taking the difference (He and

Wong 2004), or taking the sum (Lubatkin, Simsek et al. 2006). Then, researchers take snapshot

measures of ambidexterity and performance to study whether there appears to be a relationship.

While determining reliable measures is important, a limitation is that the work is largely cross

sectional and based upon interviews and surveys. Such cross sectional research does not allow a

look at how ambidexterity within an organization changes over time. Another important source

for understanding organizational ambidexterity is therefore to look at actual work practices

within organizations and how those practices change over time (Barley and Kunda 2001);

collecting and analyzing longitudinal, qualitative data can provide insights into how and why

people in organizations act and interact over time (Langley 1999).

2.2 Ambidextrous Software Organizations
In this section, we review the software literature on dualities associated with ambidexterity,

proposed designs for achieving ambidexterity, and the process for increasing ambidextrous

capability within software organizations.

www.manaraa.com

 21

Dualities. One perspective which has strongly influenced software organizations is the contrast

between plan-driven and agile development approaches (Boehm 2002). Boehm and Turner

(2004) describe various development and improvement approaches as varying along a planning

spectrum based upon emphasis in upfront planning and documentation. At the most rigid end of

the planning spectrum is inch-pebble management where every aspect of projects is planned and

micromanaged. At the most lax end of the planning spectrum are hackers who plan nothing and

shun documentation. Realistically, most development methods fall somewhere in between

depending upon how the approach is interpreted and implemented within a specific organization.

With plan-driven approaches, the emphasis is on codifying important knowledge and creating

reliable processes, and the underlying value is discipline (Boehm and Turner 2004). For

example, with the SW-CMM, software processes are key to increasing organizational maturity:

mature software organizations define processes and tailor them to specific projects; they

establish an infrastructure for managing software processes; and they use quantitative measures

to support continuous development of software processes (Paulk, Curtis et al. 1993; Paulk,

Weber et al. 1995; CMMI Product Team 2002). Organizational maturity is indicated by

satisfying key process areas associated with five levels: initial (1), repeatable (2), defined (3),

managed (4), and optimizing (5); furthermore, organizations are advised on the order in which

these key process areas should be improved. While plan-driven approaches can enhance

predictability and provide high quality assurance, there are a number of risks that should be

considered. First, such approaches can be expensive to put into practice; and adopting industry

best practices may not fit closely the wants and needs of the organization (Iversen, Nielsen et al.

2002). Second, changing technical, market, or customer requirements could make the

documented processes obsolete; therefore, the organization must also have processes in place to

deal with these changes. Third, software engineers may resist the imposed structure provided by

these approaches, perceiving these standards as a loss of autonomy or a hindrance to the creative

development process (Adler, McGarry et al. 2005).

With agile approaches, the emphasis is on rapid change facilitated by close collaboration

between customers and the development organization to continually refine and prioritize

requirements; the underlying value is agility (Boehm and Turner 2004). Because requirements

are expected to change, agile development occurs in short, iterative development cycles, and

there is little attempt to predict future requirements. For example, in the Scrum software

development methodology (Rising and Janoff 2000; Schwaber and Beedle 2001), small teams

focus on producing working code during sprints, short time period punctuated by a client

demonstration of progress. To accomplish this, there are daily scrum meetings led by a scrum

master where developers state progress since the last meeting, list obstacles, and state goals for

the day. When each sprint closes, it represents a new opportunity for planning and incorporating

requirements from the backlog or changes identified by customers during the product

demonstration. Although agile methods can speed time to market, there are risks associated with

reliance on agile approaches. A short-term focus may lead to an inflexible architecture that does

not meet future needs; emphasis on early success may lead to rework or code that does not scale;

and customer liaison may not have sufficient time, commitment, or knowledge to guide projects

(Boehm 2002; Boehm and Turner 2004).

www.manaraa.com

 22

A second perspective on the dualities within software organizations has been investigated within

the context of managing globally distributed software development project teams (Lee, DeLone

et al. 2006; Lee, DeLone et al. 2007). The two dualities mentioned here are IS project rigor and

IS project agility. Consistent with plan-driven approaches, IS project rigor (Lee, DeLone et al.

2007) emphasizes adherence to defined processes and standards across the project. Indications of

rigor include detailed project plans, documented software development processes, common

technological environment, and formal communications. Consistent with agile approaches, IS

project agility (Lee, DeLone et al. 2007) emphasizes anticipating, sensing, and efficiency

responding to changing system requirements. IS project agility is indicated by quick turnaround

on change requests. Being agile also means such changes can be accomplished with lower cost.

Empirical investigations with global IS project teams have indicated the most successful teams

are ambidextrous. In particular, successful project teams required agility to remain alert to any

required changes and used rigor to ensure that those changes were systematically applied across

the project team (Lee, DeLone et al. 2006).

Design. Two primary approaches for designing ambidextrous software organizations have been

offered: one based upon risk management and the other on structural ambidexterity.

Using risk management, managers are advised to select an appropriate approach based upon

project and company characteristics. Boehm and Turner (Boehm 2002; Boehm and Turner 2004)

advise that project characteristics such as developer skill set, customer availability, and

requirements predictability be evaluated and used to pick the approach that best fits the situation.

If the main goals are speed and customer satisfaction, agile approaches may be more appropriate;

however, if the main goal is a quality product and requirements are stable, then plan-driven

approaches may be more suitable (Boehm 2002). When a combination of project characteristics

or goals is present, the need for ambidexterity occurs, and managers are advised to use risk

analysis techniques to determine the appropriate mixture of discipline and agility. Given that

additional costs are associated with developing and maintaining each capability, managers

should not assume that ambidexterity is necessary:

“Both agile and plan-driven methods have a home ground of project

characteristics in which each clearly works best, and where the other will have

difficulties. Hybrid approaches that combine both methods are feasible and

necessary for projects that combine a mix of agile and plan-driven home ground

characteristics.” (Boehm 2002, p. 69)

Using structural ambidexterity, systems development organization create a traditional subunit

focused on exploitation and an agile subunit focusing on exploration (Vinekar, Slinkman et al.

2006). Each unit would differ with respect to management, desired skills, processes, and

technology. In the traditional subunit, managers would use plan-driven approaches, developers

would be tasked and rewarded as individuals, and conformance to standard processes and

technology would be measured. In the agile subunit, managers would work as facilitators,

developers would be tasked and rewarded within collaborative teams, and processes and

technology would support incremental, evolutionary development. The perceived benefits of this

separation include allowing the IS management team to learn and apply best practices from each

subunit, allowing individuals within the organization to work in the culture that best matches

www.manaraa.com

 23

their personality, and providing a straightforward means of adding ambidexterity to an

organization that is already proficient at either discipline or agility (Vinekar, Slinkman et al.

2006).

There are, however, limitations with the structural ambidexterity approach. First, it places the

burden for ambidexterity solely on the top management team. By contrast, contextual

ambidexterity encourages individuals within the organization to learn to become ambidextrous.

Second, small firms may lack the resources or stability required for creating subunits dedicated

to plan-driven and agile processes as advised by structural ambidexterity (Vinekar, Slinkman et

al. 2006). Therefore, for small firms that operate in dynamic environments, the concept of

contextual ambidexterity seems most feasible (Lubatkin, Simsek et al. 2006).

Process. The software literature provides very limited suggestions for managers that want to

build ambidextrous software organizations. A short term solution for organizations that are

lacking one set of skills is to obtain those skills through strategic partnering, whereas longer term

solutions can be achieved by adopting sustained improvement efforts such as the People

Capability Maturity Model (Curtis, Hefley et al. 2002) to improve staff capabilities (Boehm and

Turner 2004). As the IDEAL model (McFeeley 1996) has been shown to be an effective means

of making improvements in small software organizations (Kautz, Hansen et al. 2000), we

adopted it as a framework for our research into making improvements at TelSoft. The IDEAL

model (see Figure 3) was developed by the Software Engineering Institute to improve

organizational maturity within software organizations. During the initiating phase, commitment

is secured from the client to begin work on an improvement area. During the diagnosing phase,

the researchers seek to understand the current problems and practices within the organization that

may need changing. The establishing stage allows the researchers to plan action to be conducted

in the acting phase. The learning stage is a time of critical reflection upon the lessons learned

during earlier phases. This is also the time to decide whether to exit from the IDEAL cycle or

whether an additional cycle will be required to meet project objectives.

Figure 3: IDEAL Model (McFeeley 1996)

Stimulus for
improvement

Set context &
Establish

sponsorship

Establish

infra-
structure

Appraise &
Characterize

current process

Develop recommendations

& Document results

Set strategy &
Priorities

Establish

process action
teams & Action

plans

Define processes & measures

Plan & Execute pilots
Plan. Execute, & Track installation

Document &

Analyze lessons

Revise

organizational
approach

INITIATING

DIAGNO-
SING

ESTABLISH-
MENT

ACTING
LEARNING

www.manaraa.com

24

Chapter 3: Research Approach

First, this chapter describes the selected research methodology: its definition, perceived benefits,

inherent challenges, and evaluation criteria. Second, it describes the research process at TelSoft

by discussing the research project‟s organizational structure as well as data collection and

analysis techniques. For a more detailed description of data sources and improvement activities

at TelSoft, see Part III of the dissertation. Chapter 5 applies the evaluation criteria to discuss the

research cycle (McKay and Marshall 2001) and discusses the overall research contributions.

3.1 Research Methodology

This research is concerned with improving software practices. The term practice is used to

describe meaningful action taken within a specific organizational or group context (Cook and

Brown 1999). Software practices refer to software developers‟ and managers‟ everyday

activities, routines, and processes directed toward increasing success for a portfolio of IS

projects. Concerns at TelSoft included areas such as project portfolio management, project

management, customer relationship management, software strategy, and software process

management.

Like other action research based studies (Baskerville 1999), this research adopts an interpretive

perspective. Interpretivists‟ ontological beliefs assume that reality is socially constructed by the

actors within a particular situation. Interpretivists‟ epistemological beliefs require researchers to

get actively involved in understanding the organizational context; therefore, a suitable research

methodology must allow for observation and interaction in a field setting (Orlikowski and

Baroudi 1991). In action research, the research team does not attempt an objective, value-neutral

stance; instead, the researchers‟ beliefs and values play an active role in shaping and changing

the organization.

The overall research questions and objectives (see 1.2 Research Design above) as well as the

researchers‟ ontological and epistemological stance should align and drive the research design

(Orlikowski and Baroudi 1991; Mason 2002). Accordingly, we have selected CPR (Mathiassen

2002) as the most appropriate research methodology. CPR is a pluralist IS research methodology

which generates meaningful contributions about software practices through close collaboration

between researchers and practitioners. Methodological pluralism is appropriate for SPI because

such highly complex real-world problems call for multiple perspectives to understand their

richness (Mingers and Gill 1997; Mingers 2001). CPR aims to understand practice through

interpretation, to support practice through designing artifacts, and to improve practice through

making interventions. These research goals are accomplished by combining three different

research approaches – practice studies, design research
1
, and action research. In practice studies,

1
 In Mathiassen‟s article (2002), the term “experiment” was described as follows: Researchers “design normative

propositions or artifacts, e.g. guidelines, standards, methods, techniques, or tools … to create knowledge that can be

used to plan, guide, or improve practice; the outcome is some form of artifact that has been developed and tested in

relation to particular systems development disciplines” (Mathiasen 2002, p. 327). As this description is completely

consistent with what is now commonly discussed in the IS literature as design science or design research (Hevner et

al., 2004; Cole et al., 2005), we use the term “design research” here instead.

www.manaraa.com

 25

the goal is to understand practice through direct (e.g. case studies and observation) and indirect

methods (e.g. interviews and surveys). In design research, the objective is to create innovative

artifacts that solve wicked problems effectively and efficiently; these artifacts can be constructs

which specify vocabulary and symbols, models that form new abstractions or representations,

methods that codify algorithms or best practices that show feasibility of the idea (March and

Smith, 1995; Hevner et al. 2004). In action research the objective is to “contribute both to the

practical concerns of people in an immediate problematic situation and to the goals of social

science by joint collaboration” (Rapoport 1970). Action research typically follows a learning

cycle that consists of diagnosing, action planning, action taking, evaluating, and specifying

learning (Susman and Evered 1978). CPR can lead to building and evaluating IS theories for

analyzing, supporting, and improving software practices.

As illustrated in Figure 4, the goals of this research study were well aligned with CPR. Overall at

TelSoft, we wanted to understand dualities involved in improving software practices (research

objective 1), design appropriate interventions to address these dualities (research objective 2),

and improve software practices by developing ambidextrous capabilities (research objective 3).

Figure 4: CPR-based Goals and Research Approaches (Mathiassen 2002)

Improve
Practices

Understand
Dualities

Design
Interventions

Design

Research

Practice

Studies

Action

Research

In CPR, action research provides the overall structure for the research collaboration while

practice studies and design research activities are incorporated as needed:

“Action research should be used as the basic form to establish a close relation to

practice and to ensure the relevance of the research. But whenever feasible and

useful this basic approach should be supplemented with experiments and practice

studies.” (Mathiassen 2002, p. 339)

While CPR in this way combines different approaches, the overarching focus is on improvement

and change and the dominating methodology is action research; practice research and design

research elements are hence organized and presented as parts of overarching action research

activities. Given this central role of action research in structuring this study, we next provide

additional background about action research and show how this influenced the research process

at TelSoft.

www.manaraa.com

 26

3.2 Action Research

 “An action researcher is a person with a scientific attitude, an understanding of

qualitative research principles, and understanding of the dynamics of change, and

a commitment to studying problems that are relevant in real settings”

(Cunningham 1993, p. 4)

The IS research community frequently debates the role of relevance in academic research.

Proponents of basic research create knowledge for other academics and contend that the

relevancy of their work to practitioners may only be appreciated in the future; supporters of

applied research focus on solving the problems of today‟s practitioners (Goldenson and Herbsleb

1995). As researchers strive to balance the dual goals of relevance and rigor, awareness has

grown of action research as one possible solution. An appropriate balance can be achieved in a

variety of ways. In fact, Baskerville and Wood-Harper (1998) describe as many as ten forms of

action research including canonical action research (CAR) (Susman and Evered 1978), action

science (Argyris 1985), and Multiview (Avison and Wood-Harper 1990). These action research

forms differ according to their process model (iterative, reflective, or linear), structure (rigorous

or fluid), typical involvement (collaborative, facilitative, or experimental), and primary goals

(organizational development, system design, scientific knowledge, or training) (Baskerville and

Wood-Harper 1998).

Checkland and Holwell (1998) conceptualize action research in terms of three key elements: an

area of concern (A), a framework of ideas (F), and a methodology of inquiry (M). Explicating

these elements at the beginning of the research project provides structure and focus, indicating

which pieces of the many forms and variety of available data count as relevant data for your

research. In this view of the research process, the researcher enters a real-world situation with an

interest in a number of themes that apply within an area of concern (A). A specific methodology

(M) is used to gain knowledge about the real-world problem and guide the intervention. The

framework of ideas (F) is the theoretical perspective(s) explored within this context. The

research process can yield insights in any of these three elements; for example, there can be

lessons learned regarding the area of concern (A), suitability of the methodology (M), or

extensions to theory (F).

McKay and Marshall (2001) expand on this idea by stating that action research contains two

concurrent learning cycles, each having some version of A, F, and M:

1. Problem solving cycle that addresses the practical concerns of the industry partner (P:

problematic situation; F: theoretical framing, and MPS: methodology for addressing P).

2. Research cycle that addresses the need for scientific knowledge on the part of the

researchers (A: area of concern; F: theoretical framing, and MR: methodology for

conducting researching into A).

The challenge for action researchers is to successfully navigate both inquiry cycles as well as the

interdependencies between the two. Table 3 shows how these action research elements apply in

the proposed dissertation work.

www.manaraa.com

 27

Table 3: Elements in the Action Research Intervention at TelSoft

Cycle Element Description In this Study

Problem

Solving

Cycle

P Problematic situation to be

changed.

Primary ownership lies

with industry partner.

Improvement of software practice

within TelSoft‟s Software

Development group.

F Theoretical framing used to

shape problem solving.

Adaptive organizations: A Sense-and-

Respond Approach (Haeckel 1995;

Haeckel 1999).

SPI literature.

Software engineering and RE

literature.

MPS Problem solving

methodology.

The IDEAL methodology (McFeeley

1996).

Interview, discussion, and workshops

Process improvement teams.

Research

Cycle

A Area of Concern. Improving Software Practices within

the areas of

 RE assessment

 SPI action planning

 Software process management

 Project portfolio management.

F Theoretical Framing used

to investigate A.

Primary ownership lies

with researchers.

Ambidextrous organizations

(Birkinshaw and Gibson 2004;

O'Reilly III and Tushman 2004).

SPI literature.

Software engineering and RE

literature.

MR Research Methodology. Action research (Rapoport 1970;

McKay and Marshall 2001; Davison,

Martinsons et al. 2004).

Collaborative practice research

(Mathiassen 2002).

There are important benefits to action research. Action research can lead to a rich data set based

on a mixture of methods such as participant observation, interviews, document analysis, and

surveys; the resulting data provide a strong foundation for supporting research that is high in

external validity and relevance. Such characteristics make action research an excellent candidate

for studying longitudinal organizational change processes (Pettigrew 1990). Baskerville and

Wood-Harper (1996, p. 240) even state that “where a specific new methodology or an

improvement to a methodology is being studied, the action research method may be the only

relevant research method presently available.”

Key characteristics of the adopted action research design can be summarized in terms of the

selected process model, structure type, involvement level, and primary goals (Baskerville and

Wood-Harper 1998).

www.manaraa.com

 28

 The research process was iterative involving a repeating set of activities of diagnosis,

action planning, action-taking, and learning. This supported TelSoft in applying learning

from early experiences in the improvement effort.

 Within the meta-structure of the IDEAL model, the guidance was fluid with loosely

defined activities. We allowed particular activities and specific improvement initiatives to

emerge as the research process unfolded. This allowed more input from the practitioners

involved and fitted the dynamic environment in which the industry partner operates.

 The research team‟s involvement was facilitative: the expertise of the research team

guided the effort; however, practitioners took primary responsibility for resolving the

encountered problematic situations.

 The primary goals of the research were organizational development (from the

practitioners‟ standpoint) and scientific knowledge (from the research team‟s standpoint).

3.3 Research Criteria

To combat existing skepticism surrounding the validity of action research, it is important to

exhibit rigor during data collection and analysis activities. However, managing the data

collection process to adequately reflect on both the practical and research interests can be a

challenge. Here, action researchers can learn from general recommendations for qualitative

research such as techniques for documenting field notes (Miles and Huberman 1994), facilitating

data analysis through computer software (Weitzman and Miles 1995), and demonstrating

traceability between data and results (Lincoln and Guba 1985; Mason 2002). Overall, Checkland

(1998) stresses the importance of the “recoverability” of action research projects. Recoverable

research makes clear to “interested observers … [the] processes and models which enabled the

team to make their interpretations and draw their conclusions” (Checkland and Holwell 1998, p.

18).

To supplement this general advice, criteria for evaluating specific forms of action research have

appeared in the literature. For example, Mårtensson and Lee (2004) propose three evaluative

criteria for the usefulness of dialogical action research: (1) industry partner expresses that the

problematic situation has been solved, (2) industry partner‟s expertise or knowledge has

improved, and (3) the researcher‟s expertise or knowledge has improved. Davison et al. (2004)

suggest five principles for guiding and evaluating canonical action research: creating a

researcher-client agreement, using a cyclical process model, applying and extending theory,

implementing an intervention, and reflecting upon the action. These five principles have been

used in published canonical action research studies to provide evidence of validity (e.g.

Lindgren, Henfridsson et al. 2004).

This research adopts six criteria for guiding the CPR-based research process. These criteria relate

to roles, documentation, control, usefulness, theory, and transfer (Iversen, Mathiassen et al.

2004). Each criterion suggests questions that should be considered and addressed in planning the

research and evaluating its validity (see Table 4).

Table 4: CPR Evaluation Criteria (Iversen et al., 2004)

Criteria Questions

Roles What are the researcher and practitioner roles?

How do these roles develop over time?

www.manaraa.com

 29

Criteria Questions

Documentation What data are collected to support the problem solving and

research goals?

How are these data collected?

How is data quality ensured?

Control How is the researcher-client relationship established?

Who exercises authority over the process?

To what degree are formalized control mechanisms adopted?

Usefulness How is usefulness of the solution established in the problem

situation?

Theory How are frameworks used to support the study?

How are results subsequently related to these frameworks?

Transfer Under what conditions can the results be transferred to or

adapted in other contexts?

3.4 Research Partner

Case selection and description are important parts of qualitative research, and they are especially

important in CPR. When compared against the sampling tradition of surveys, the use of a single

case can seem particularly suspect. However, a single case can be especially valuable to study

phenomena that are extreme, rare, or previously inaccessible; when it represents a typical

instance; or when it allows the opportunity for a longitudinal study (Yin 2003). We find the use

of a single case organization to be justified given the nature of action research, the fact that

TelSoft is representative of other small software firms, and the opportunity to study the

organization longitudinally.

When evaluating an industry partner, action researchers must consider potential ethical

dilemmas, i.e. conflicts between the values and interests of researchers and industry partners

(Rapoport 1970). First, the action researchers and industry partners must find one another

acceptable. While Rapoport speaks about this from the standpoint of social responsibility, this

also extends to the concern that the problems at the industry site are sufficiently interesting from

a research perspective, that the subjects understand the real opportunities for improvement, and

that a relevant theoretical framing exists (Kock 1997). My existing knowledge of TelSoft and its

employees allowed us to feel confident that this was a suitable location. Second, issues of

participant confidentiality and privacy was addressed by following the standards outlined by the

Georgia State University Institutional Review Board (IRB) process (e.g. obtaining informed

consent from employees, ensuring locked files and using pseudonyms). Third, researchers and

industry partners might disagree over whether knowledge learned through the partnership may be

shared with the research community. To prevent ethical dilemmas from arising later on in the

project, we followed the principle of creating a researcher-client agreement (RCA) (Davison,

Martinsons et al. 2004). Our RCA (called a “Memorandum of Understanding”) states the dual

objectives of research and practice (see Part III, Appendix B.1). In addition, we agreed to use

pseudonyms for the company and its employees in research writings.

The characteristics of the case organization help establish external validity, the domain to which

findings can be generalized (Yin 2003). Accordingly, we next provide more details about

www.manaraa.com

 30

TelSoft‟s history and characteristics. Like other small software firms (Horvat, Rozman et al.

2000), TelSoft is oriented toward known customers in a niche market; it has high reliance on

committed employees who perform many roles within the organization; and it has few resources

devoted to innovation. Struggling to survive in a competitive environment, TelSoft frequently

neglected innovation and adaptation, and instead emphasized known customers, products, and

services. Although not considered a market leader, TelSoft has a reliable customer base

consisting of two large customers that drive innovation to their core software products and

several hundred smaller customers that use TelSoft‟s standardized geographic mapping software.

Existing customers are also a major impetus for process improvement at TelSoft. In July 2000,

TelSoft was prompted into process innovation by a major client‟s requirement for outside

certification of its software capability by achieving level 2 on the SW-CMM (Paulk, Curtis et al.

1993; Paulk, Weber et al. 1995). However, after only one year of engaging in SPI, all resources

associated with this initiative were abruptly reassigned when the client removed the certification

requirement. Subsequently, no organized activity focused on improving management of

individual projects or the project portfolio.

Prior attempts at technology-based innovation had gone poorly for TelSoft. In the late 1990s,

TelSoft sensed that the introduction of spatial databases could revolutionize their GIS products.

After years of investment, however, the company‟s CEO chose to terminate the project due to

missed deadlines, inadequate functionality, and limited market success. From that point on,

management was wary of developing new practices and pursuing new markets and was ordered

by the CEO to halt all “speculative development” until further notice.

TelSoft management acknowledges that the company‟s biggest strength is its people: experienced

software engineers with deep knowledge of its products, systems analysts with strong customer

relationships, and managers willing to adapt quickly to customer requests. At the time our study

began in 2004, TelSoft was forced to downsize its workforce, causing it to lose valuable

customer and technical expertise, and also requiring that employees adopt additional roles and

responsibilities. In addition, TelSoft was experiencing severe issues with their main customers:

software releases were frequently shipped late, ran over budget, and contained deviations from

agreed upon requirements. These issues prompted the management team to again invest in

organizational innovation through the action research collaboration with Georgia State

University.

3.5 Research Process

At the beginning of the initiative, the research team consisted of Nannette Napier, Dr. Lars

Mathiassen, and Dr. Roy D. Johnson. The collaboration was managed by a steering committee

(SC) of senior management from TelSoft and the research team (see Figure 5). The SC met 2-3

times per year as needed to oversee the project. More hands-on activities were completed by the

problem solving team (PST) consisting of middle-level managers at TelSoft and the research

team. Over the course of the initiative, the personnel and organizational structure of the

collaboration evolved. For instance, the Division President was replaced in January 2005;

temporary improvement teams were created that reported to the PST beginning in October 2005;

a software coordination group (SCG) assumed the responsibilities of the SC in November 2005;

and Dr. Johnson left the research team in April 2006. Part III provides more detail on these

changes.

www.manaraa.com

 31

Figure 5: Managing Collaborative Practice Research (December 2004)

TelSoft: VP of Software,

3 Managers

CEPRIN: Napier, Mathiassen, and

Johnson

TelSoft: CEO, VP of Software,

Division President

CEPRIN: Napier, Mathiassen, and

Johnson

Steering

Committee

(SC)

Problem Solving

Team

(PST)

Data collection and documentation are essential for successful action research and qualitative

research in general (Miles and Huberman 1994; Avison, Lau et al. 1999; Mason 2002). The

study used multiple sources of evidence to corroborate findings (Miles and Huberman 1994;

Mason 2002). These sources include: field observation, field notes, minutes from PST meetings,

discussion and feedback from employee workshops on the improvement activities, diagnostic

reports of software practices at TelSoft, and unlimited access to all TelSoft‟s process

documentation. During the diagnosing phase, the primary data sources were semi-structured

interviews with 22 representatives from three major stakeholder groups: software development,

internal customers, and external customers, as well as feedback workshops with employees.

During the establishing and acting phases, we followed the progress of dedicated improvement

teams by participating in team meetings, taking field notes, reviewing meeting minutes, and

speaking informally with team participants. During the learning phase, an assessment was

conducted to evaluate the initiative‟s impact, organizational structure, and overall perception by

various stakeholders. Semi-structured interviews were again used and supplemented by an online

survey sent to the broader software development group. Table 5 summarizes the data collection

activities across the five phases of the research study and indicates the documents which are

available in Appendix B of Part III.

www.manaraa.com

 32

Table 5: Data Collection at TelSoft
 Initiating

(8/13/2004 –11/28/2004)

Diagnosing

(11/29/2004 – 5/31/2005)

Intervention Cycle 1

(6/1/2005 – 4/17/2006)

Intervention Cycle 2

(4/18/2006 – 11/7/2006)

Learning

(11/8/2006 – 3/31/ 2007)

Start of phase First email sent to software

development manager

regarding possible

collaboration

First diagnosing interview of

software development

manager

First PST meeting after all

the diagnosing

interviews were

completed

Second Wave Kick-off

Meeting

Second Wave Completion

Meeting

Meetings Invitation to Collaboration

with TelSoft

management (10/12/04)

First Problem Solving Team

(PST) meeting

(11/19/2004)

Bi-weekly meetings of the

Research Team

Number of management

meetings:

 PST (5)

 Steering Committee

(SC) (3/16/2005)

Bi-weekly meetings of

Research Team

Number of management

meetings:

 PST (10)

 SC (6/9/2005)

 Software Coordination

Group (SCG) (8)

Number of improvement

team meetings:

 Combined

Configuration

Management-Quality

Assurance (1)

 Configuration

Management (9)

 Customer Relations (7)

 Quality Assurance (10)

 Requirements

Management (6)

Number of management

meetings:

 PST (8)

 SCG (6)

Number of improvement

team meetings:

 Customer Relations (5)

 Process Management

(7)

 Quality Results (6)

Number of management

meetings:

 PST (3)

 SCG (4)

www.manaraa.com

 33

 Initiating

(8/13/2004 –11/28/2004)

Diagnosing

(11/29/2004 – 5/31/2005)

Intervention Cycle 1

(6/1/2005 – 4/17/2006)

Intervention Cycle 2

(4/18/2006 – 11/7/2006)

Learning

(11/8/2006 – 3/31/ 2007)

Meeting

Documentation

Private meeting notes

 Invitation to

collaboration

 Researcher meetings (5)

 PST meeting (1)

Public meeting minute

 PST meeting

Private meeting notes

 Field notes reflecting

upon interactions at

TelSoft (11 days)

 Notes from 22

interviews

 Notes from research

meetings (6)

Public meeting minutes

 PST meetings (3)

Transcription

 5 interviews

Public meeting minutes

 Configuration

Management (5)

 Customer Relations (4)

 PST meetings (7)

 Quality Assurance (5)

 Requirements

Management (2)

Public meeting minutes

 Customer Relations (2)

 Process Management

(7)

 PST meetings (3)

 Quality Results (4)

Public meeting minutes

 PST Action Items List

(3)

Other Data

Collection

methods

None 22 Assessment Interviews

(11/29/2004 –

5/25/2005)

Requirements engineering

standardized assessment

(3/30/2005)

None None 10 Assessment

Interviews (12/19/2006

– 2/25/2007)

 Online survey sent to 25

TelSoft employees

regarding SPI impact

 Requirements

engineering

standardized assessment

(6/19/2007)

Workshops or

Group Status

Meetings

None Workshops to present and

verify interview data

 Software Development

(1/19/05)

 Internal customers

Workshop (3/16/05)

First Wave Kick-off meeting

(9/1/2005)

Interim Status Presentation

 Software Manager‟s

meeting (3/15/2006)

 Software Development

staff (3/21/2006)

Kick-off Meeting for

Second Wave

(4/18/2006)

Second Wave Completion

meeting (11/8/2006)

www.manaraa.com

 34

 Initiating

(8/13/2004 –11/28/2004)

Diagnosing

(11/29/2004 – 5/31/2005)

Intervention Cycle 1

(6/1/2005 – 4/17/2006)

Intervention Cycle 2

(4/18/2006 – 11/7/2006)

Learning

(11/8/2006 – 3/31/ 2007)

Key Project

Documentation

Invitation to Collaboration

slides

Memorandum of

Understanding^

Project Focus Document

TelSoft Organization Chart

IRB Protocol #H05176^

“Managing

Requirements in

Providing and

Innovating Software

Services”

TelSoft process

documentation (53 files

consisting of templates,

process flows,

guidelines, and

examples)

Requirements Process

Summary based upon

interviews

Interview Guide for

Software Development

Internal Customers, and

External Customers^

Phase 1 Diagnostic Report

summarizing the

interviews and standards

assessment^

Software Charter^

 Reason For Being

 Software Strategy

 Policies

SCG Fixed Agenda^

Outputs from each

improvement team:

 Project Plan

 Position papers

 Process documents

 Templates

 Transition plan

First Wave Summary Report

Updated TelSoft‟s website to

include Software Charter

and select process

documents

PST Fixed Agenda^

Outputs from each

improvement team:

 Project Plan

 Position papers

 Process documents

 Templates

Second Wave Summary

Report^

Final Project Assessment

Reports:

 External customer

interview summaries

 SPI Impact results

report^

 SCG assessment report

 Requirements

Engineering

Assessment results^

www.manaraa.com

 35

As suggested by Miles and Huberman (1994, p. 56), data analysis was an ongoing process. This

iterative nature of action research, in particular, assured that data collection and data analysis

were intertwined. Thus, data analysis proceeded across project phases and informed activity in

subsequent phases. For example, the research team met during the diagnosing phase to detect

patterns emerging from the interview data and to reflect upon what was learned. We created

interim reports and held status meetings with members of the software development group. For

each research paper, an additional level of analysis was conducted was driven by specific

research objectives and focused on a subset of the data collected. These detailed analyses are

described in the research papers presented in Part II.

www.manaraa.com

36

Chapter 4: Review of Results

In this chapter, we summarize the results and contribution each of the four papers within this

dissertation. Chapter 5 elaborates further on the overall contribution and research implications

while also reflecting on limitations of the study.

4.1 Paper 1: Combining Perceptions and Processes

The first paper is based upon our experiences in the diagnosing phase and details our search for

an appropriate methodology for effectively assessing RE practice. When evaluating RE practice

at TelSoft, we identified the duality of process-driven versus perception-driven assessment and

developed a framework for combining both approaches.

Table 6: Paper 1 Summary

Area of concern (A) RE assessment

Framework of ideas (F) Process-based: Total quality management, process

management

 Perception-based: Stakeholder analysis

Methodology (M) Process-based: Requirements Engineering: Good Practice

Guide (REGPG) assessment

 Perception-based: Semi-structured interviews and

workshops

Research Questions 1. What different insights are gained from process- and

perception-driven assessments of RE practices?

2. How can processes and perceptions be combined in

assessment of RE practices?

IDEAL Research Phases Diagnosing, Learning

Contributions Demonstrates importance of combining process-based and

perception-based knowledge when evaluating RE practices

 Describes a combined RE assessment framework with steps

and guidelines for conducting process-based and perception-

based inquiry

Researchers have used three main approaches to RE assessment: analyzing the RE-related data

from generic software process assessments (e.g., SW-CMM or ISO/IEC 15504) (2000); applying

a RE-specific version of the SW-CMM (Beecham, Hall et al. 2005); and, measuring adherence to

best practices based on a dedicated RE maturity model such as the Requirements Engineering

Good Practice Guide (REGPG) (Sommerville and Sawyer 1997; Sommerville and Ransom

2005). Although all three approaches acknowledge the importance of tailoring assessments to

organizational needs, they each assume that RE is best assessed and improved by benchmarking

against best practices (Nielsen and Pries-Heje 2002). This thinking is consistent with the ideas

behind total quality management and process management (Deming 1986; Zbaracki 1998).

Unfortunately, these process-driven approaches do not necessarily engage stakeholders in ways

that increase buy-in and facilitate successful implementation of new practices.

www.manaraa.com

 37

An alternative approach to RE assessment would privilege perceived problems over prescribed

processes (Nielsen et al., 2002) as suggested in Table 7. In the perception-based approach,

stakeholder perceptions about strengths, weaknesses, and opportunities related to RE activities

and artifacts drive data collection and analysis; stakeholders, rather than models, determine what

is important to study by assigning priorities to problems; and, solutions are grounded in the

specific context of the problematic situation. Perception-based assessment considers

organizational stakeholders‟ perceptions of current and future practices as important sources for

innovation and learning. The perception-based approach borrows from general stakeholder

analysis (Lyytinen 1988; Pouloudi and Whitley 1997; Vidgen 1997). Like interpretive research,

stakeholder analysis considers organizational actors‟ subjective meanings as important

knowledge sources; therefore, researchers emphasize the specific terms and perceptions of each

stakeholder and avoid presenting a priori concepts (Orlikowski and Baroudi 1991).

Table 7: Competing Assessment Approaches: Process-based and Perception-based

 Process-based Perception-based

What counts as data? Prescribed processes;

Deviations between current

and best practices

Perceived problems;

Stakeholder perceptions of

problems

What determines focus of

assessment?

A priori model of RE Stakeholders

What is the source for

solutions?

Tailored from ideal model

of best practice

Grounded in context of the

problematic situation

This paper offers two primary contributions. First, it expands our knowledge of what constitutes

legitimate, meaningful data when evaluating RE practices. This is done by explicitly

characterizing the existing approaches as being process-based and by offering the

complementary approach of perception-based RE assessment. In addition, the results from a

process-based assessment (REGPG) and perception-based assessment are compared. The

REGPG assessment identified TelSoft‟s strengths as being in the areas of documenting, eliciting,

and describing requirements; areas for improvement were in analyzing, validating, and managing

requirements. The company‟s overall RE maturity level was assessed at the lowest level: initial.

The perception-based assessment identified some findings that complemented this assessment

and other insights that were contradictory. At the same time, we found instances where one form

of inquiry provided insight into an area that the other did not even address. These examples

illustrate the benefit of combining the two sources of knowledge to obtain a more comprehensive

view of RE practices.

Second, it creates an RE assessment framework which takes advantage of both kinds of

knowledge. Using Gregor‟s (2006), classification for IS theories, this framework can be

classified as a theory for design and action which gives specific prescriptions for assessing RE

practices. This combined approach to RE assessment prescribes three steps: initiating the

assessment, executing multiple inquiry cycles, and making recommendations based upon the

findings. The paper also suggests activities that should be considered during each step and

illustrates how this was done at TelSoft. We found this framework to be an effective tool in

planning both the diagnosing and learning phases of the research collaboration at TelSoft.

www.manaraa.com

 38

4.2 Paper 2: Negotiating Repeat-ability and Response-ability

A manager trying to decide how to improve RE practices may choose from one of two

competing theories about why current software practices are problematic and how problems are

resolved: repeat-ability and response-ability (Napier, Mathiassen et al. 2006). Drawing upon the

literature on software process improvement and the literature on agile software development, we

suggest that these theories differ based upon their assumptions about: nature of requirements,

requirements capture, requirements usage, change management, and improvement approach (as

summarized in Table 9).

Table 8: Paper 2 Summary

Area of Concern (A) SPI action planning

Framework of ideas (F) Repeat-ability: Plan-driven development

 Response-ability: Agile development

Methodology (M) Alternative templates strategy

Research Questions 1. What assumptions distinguish repeat-ability from response-

ability theories of RE?

2. How do repeat-ability and response-ability theories differ in

assessing RE practice?

3. How do repeat-ability and response-ability theories apply to

improving RE practice?

IDEAL Research Phase Establishing

Contributions Explicates two theories for understanding and resolving issues

in RE practice: repeat-ability and response-ability

 Demonstrates how RE practices can be improved by

considering both perspectives

Repeat-ability holds that good requirements practices are plan-driven and follow a set of generic

best practices for how to arrive at an agreed-upon baseline of software requirements. Repeat-

ability is an important principle within the SW-CMM (Paulk, Curtis et al. 1993). In fact, the first

step in increasing organizational maturity involves moving from an initial level to a repeatable

level by reducing variations in practices (Humphrey 1989). From the repeat-ability perspective,

requirements are textual representations of the desired software capabilities. Requirements

knowledge is explicated as objects that are passed between requirements providers and

requirements receivers. Requirements capture is a formal process that occurs before development

work begins; it includes document review, discussion, and sign-off to indicate approval. Once

sign-off has been obtained, a requirements baseline is established. Any changes to the

requirements baseline must be documented and communicated to relevant stakeholders (Paulk,

Curtis et al. 1993). The role of quality assurance is to verify that the completed software matches

the requirements specification. If RE practices are problematic, this approach looks for missing

or inefficient processes. The overall improvement approach in the repeat-ability paradigm is to

institute best practices and reduce process variance (Humphrey 1989).

In contrast, response-ability holds that good requirements practices are adaptive and involve

close collaboration and interaction between customers and developers to help develop

www.manaraa.com

 39

satisfactory software solutions. Response-ability is an important principle within agile

development approaches (Beck 1999; Boehm and Turner 2004; Turk, France et al. 2005). In fact,

one of the four basic principles of the Agile Manifesto is “Responding to change over following

a plan” (Agile Alliance 2001). In the response-ability theory, requirements exist as shared

understandings between stakeholders. Requirements knowledge is tacit, and the role of

documentation is minimized. Customers play a critical role during software development as

expressed in the principle “Customer collaboration over contract negotiation” (Agile Alliance

2001). Customers provide immediate feedback on interim versions of the software and set

priorities for the next iteration. Requirements capture happens informally as part of ongoing

conversations with customers. This incremental approach allows requirements changes to be

incorporated into the next version of the software. If RE practices are problematic, this approach

looks for breakdowns in communication with customers or between developers. The overall

improvement approach is to increase customer satisfaction by enhancing collaboration to quickly

adapt to customer requests.

Table 9: Competing Improvement Approaches: Repeat-ability versus Response-ability

 Repeat-ability Response-ability

Nature of

requirements
 Requirements represent

software capabilities

 Requirements are explicated

as texts in documents

 Requirements are perceptions

of software capabilities

 Requirements are tacitly

embedded in social

relationships

Requirements

capture
 Requirements are derived

through specification

 Interaction is formal

 Requirements are discovered

through negotiation

 Interaction is informal

Requirements

usage
 Requirements are baselined

and predate development

 Requirements are stored with

traceability to source code

 Requirements emerge through

development

 Requirements are expressed

through software solutions

Change

management
 Requirements changes are

exceptions and must be

managed

 Requirements changes are

expected and must be

embraced

Improvement

approach
 The goal is to reduce process

variance through best

practices

 The goal is to increase

customer satisfaction through

collaboration

This description of repeat-ability and response-ability represents the primary contribution of this

paper. The two theories led to quite different inventories of problems and, as a consequence, also

to quite different recommendations for improvement at TelSoft. In fact, there is little overlap

between the two sets of findings. At the same time, both inventories of problems made sense to

managers at TelSoft, and they were found to represent relevant and important issues related to RE

practices. This application of the two theories suggests that they represent different and relevant

perspectives on RE practices. In the end, TelSoft managers selected an improvement strategy that

consisted of solutions from each category.

www.manaraa.com

 40

4.3 Paper 3: Managing Legacy and Current Processes

The third paper addresses the need for improving software process management at TelSoft. Our

chosen approach to managing RE processes at TelSoft valued both exploiting legacy and

exploring new processes.

Table 10: Paper 3 Summary

Area of Concern (A) Software process management

Framework of ideas (F) Business process change

 Legacy systems reengineering

Methodology (M) Design and refine SPR principles and model

Research Objectives 1. To define and identify principles for software process

reengineering (SPR)

2. To propose and evaluate a model for SPR

IDEAL Research Phase Acting

Contributions Articulates the need for SPR

 Develops SPR principles and model

 Evaluates SPR model at TelSoft

Once problems have been diagnosed and recommendations have been identified, the

improvement approach under the repeat-ability paradigm recommends reducing variance by

instituting best practices. These best practices become part of the organization‟s library of

software processes: “the coherent set of policies, organizational structures, technologies,

procedures, and artifacts that are needed to conceive, develop, deploy, and maintain a software

product” (Fuggetta 2001, p. 560). In this paper, we further distinguish between legacy processes

and managed processes. Legacy processes are software process descriptions that have not been

carefully managed over time and consequently have become inconsistent with the organization‟s

current policies and practices. By contrast, managed processes are software process descriptions

that have a well-defined state, represent current organizational policies, and are explicitly

monitored and controlled. Managed processes are in line to be approved and implemented into

engineering practices.

To ensure that software processes are defined, documented, measured and controlled (Humphrey

1989; Krasner, Terrel et al. 1992), organizations need to practice software process management.

Ideally, an organization would have a software process repository that contains only managed

processes and no legacy processes. However, over time, organizations that have inadequate

software process management discipline stand to continue generating legacy processes. This

presents a challenge for the practicing SPI manager: Given the starting point of legacy processes

within the organization, what is the best way to integrate these into a process repository with

managed processes and at the same time establish software process management within the

organization?

Two competing approaches here emphasize either exploitation or exploration (see Table 11 for

summary). The exploitation approach focuses on reusing knowledge contained within legacy

processes. Accordingly, legacy processes are evaluated for fit with current policies and practices.

Legacy processes that are well-aligned are revised and become managed processes while legacy

www.manaraa.com

 41

processes that are misaligned are discarded. The exploitation approach is appropriate when the

organization attaches value to the knowledge embedded within the legacy processes despite the

need for cleanup. Following such a process would allow the organization to leverage existing

software processes, and it would reinforce the beneficial contributions of prior improvement

efforts.

The exploration approach starts with a clean slate and focuses on creating new knowledge. All

legacy processes are ignored, and the managed processes are designed from scratch based upon

current business requirements. This approach saves the time associated with filtering and

revising existing documents; however, the organization bears the extra burden of inventing and

designing new processes. Furthermore, such an approach does not allow the organization to

leverage the investments made in existing process capabilities, it requires that all processes are

designed from scratch, and it easily reinforces general mistrust in the value of SPI. Nevertheless,

if there is a great distance between the legacy processes and current business needs, starting from

scratch may seem more appropriate.

Table 11: Competing Process Approaches: Exploitation versus Exploration

 Exploiting legacy processes Exploring new processes

Rationale Aligning old processes with

current policies and

practices

Developing new processes

in response to identified

needs

Starting point Legacy processes Clean slate

Core activities Filtering and revision Invention and design

Knowledge management Reuse existing knowledge Create new knowledge

This paper makes three key contributions related to dealing with exploiting and exploring legacy

processes. First, we identify an important problem within the software process management

community: our literature search revealed no mention of the problem of revival and renewal (i.e.

trying to learn from previous efforts after a failed SPI initiative). A key point is that

organizations‟ history with SPI impacts their ability to move forward. This is especially true for

those that follow SPI approaches with a heavy focus on generic, documented processes that are

tailored to individual projects. When these software organizations fail to institute proper process

management practices or when they decide to reinvest in SPI, they may likely be confronted with

a considerable portfolio of legacy processes. Future research needs to further appreciate this

problem and reconsider how software organizations can effectively develop and implement

process management solutions.

Second, we provide a general solution to this problem which we defined as software process

reengineering (SPR):

 “SPR defines criteria for transforming legacy processes; assesses existing

software processes against these criteria; and selects which processes should be

removed, innovated, or implemented. SPR establishes on that basis a repository of

managed software processes and institutes a process management discipline to

support continued improvement efforts.”

www.manaraa.com

 42

Rather than serving as an ongoing activity, SPR is a process that allows for transitioning from a

chaotic state with low process discipline to a managed state with improved software process

management discipline. Drawing upon literature on business process change and legacy systems

reengineering, we identify principles and steps for conducting SPR. The heart of the SPR activity

involves making commitments that are agreed upon by the assessors as to the difference between

the current and desired state of process documents and repository and then putting a plan in place

for making improvements. The guidelines provide a series of steps to consider when taking

action.

Third, we demonstrate how the SPR model was used at TelSoft and evaluate its effectiveness. As

other software organizations engage in SPR, their situation will be different from the one at

TelSoft. Therefore, managers must carefully consider how to adapt the proposed SPR model to

meet the organization‟s specific needs. Future research is needed to investigate the suitability of

the model within other software organizations as well as to analyze its long-term effectiveness.

4.4 Paper 4: Becoming Ambidextrous

Drawing upon Pettigrew‟s guidance for contextualist inquiry (Pettigrew 1985; Pettigrew 1987),

we show how performance management and social support context changed over time at TelSoft,

resulting in improvements in alignment and adaptability. Based on these experiences, we propose

a model for becoming ambidextrous through the processes of diagnosing, visioning, intervening,

and practicing.

Area of Concern (A) Project portfolio management

Framework of ideas (F) Contextual ambidexterity

Methodology (M) Contextualist Inquiry

Research Objectives To explore how organizations can develop managerial practices

and organizational contexts as they strive to become

ambidextrous

IDEAL Research Phases Diagnosing, Establishing, Acting, Learning

Contributions Identified four phase process for becoming ambidextrous using

contextualist inquiry perspective

In this paper, our focus is on TelSoft‟s attempt to improve project portfolio management, i.e. the

systematic management of the company‟s projects in order to decide which projects should be

added or removed as well as the relative priority of projects within that portfolio (Markowitz

1952; McFarlan 1981; De Reyck, Grushka-Cockayne et al. 2005). In software firms that are

project-based organizations, project portfolio management is a core management activity

requiring ongoing assessment of existing projects and new business opportunities (Clark and

Wheelwright 1992; Hobday 2000). The primary mechanism that TelSoft used to increase project

portfolio management was through the creation of the SCG in November 2005. The SCG

consisted of four members: Division President, Vice President of Software, Development

Manager, and Product Manager. At its monthly meetings, the group followed a fixed agenda

covering status of current projects, business opportunities, improvement initiative, and strategy

review. With the inclusion of the improvement initiative on its agenda, the SCG assumed the role

of the steering committee. To raise awareness of customer relations issues, the SCG periodically

www.manaraa.com

 43

invited account managers to provide status on the customer relationship and identify areas of

improvement.

We framed our inquiry into becoming ambidextrous as a contextualist study employing the

methodology of action research. Contextualist inquiry is concerned with understanding how

transformation efforts unfold in particular organizational settings focusing on the interactions

between content, context, and process (see Figure 6). Content refers to the areas being

transformed; in this case we focus on project portfolio management practices at TelSoft. Context

refers to the outer environment in which the organization operates as well as the inner

environment representing systems, processes, and beliefs within the organization. Following the

definition of contextual ambidexterity, we are particularly interested in performance

management and social support elements of the inner context. Finally, process refers to the

actions and interactions between various interested parties as they attempt to transform practices.

In our case, we focus on the actions and interactions related to building alignment and

adaptability within TelSoft.

Figure 6: Contextualist Inquiry into Becoming Ambidextrous

Contextual Ambidexterity View

Alignment

Adaptability

Performance Mgt.

• Discipline

• Stretch

Social Support

• Support

• Trust

influences

Context Process Content

The main contribution of this paper is a model for becoming ambidextrous consisting of four

phases: diagnosing, visioning, intervening, and practicing. The model incorporates contextualist

inquiry‟s two-dimensional approach by focusing on the horizontal unfolding of the change

process across the four phases of the action research and the interaction between content and

context.

www.manaraa.com

44

Chapter 5: Discussion

In this chapter, we discuss the overall contribution of the research, evaluate the work against

criteria for CPR-based research, and discuss implications for research and practice.

5.1 Research Contribution

Each of the individual papers addressed one or more of the overall research objectives in a

specific area of improving software practices, see Table 12. In this section, we reflect more

broadly on findings from both the research cycle (i.e. research papers summarized in chapter 4

and documented in Part II) as well as the problem-solving cycle (i.e. activities at TelSoft

documented in Part III). For each of the three objectives, we consider what we learned about the

overall research question: How can an ambidextrous perspective facilitate improvement in

software practices?

Table 12: Relationship between individual papers and research objectives

Objective 1

Dualities

Objective 2

Design

Objective 3

Process

Paper 1
Perception

Process

RE combined

assessment approach
––––

Paper 2
Repeat-ability

Response-ability

Improvement teams

driven by policies and

focused improvement

areas

––––

Paper 3

Exploiting legacy

processes

Exploring new

processes

Software process

reengineering model
––––

Paper 4
Alignment

Adaptability

SCG focused on

project portfolio

management

Four-step process:

diagnosing, visioning,

intervening, practicing

Dualities. The first research objective was to identify dualities involved in improving software

practices. Emphasizing tensions, conflicts, dilemmas, and paradoxes has been shown to be a

useful way of making sense of and redesigning organizational practices (Van de Ven and Poole

1995). To that end, this research has expanded our understanding of the dual capabilities

involved in the domains of RE assessment (Napier, Mathiassen et al. 2006), SPI action planning

(Napier, Mathiassen et al. 2006), and software process management (Napier, Kim et al. under

review). We identified three specific benefits to identifying dualities as suggested through this

ambidextrous perspective.

First, identifying dualities challenged us to look beyond the dominant paradigm and to expose

alternative viewpoints. For instance, with respect to RE assessment, we found that evaluation

techniques predominantly emphasized alignment with best practices over the perceptions of key

www.manaraa.com

 45

stakeholders. Therefore, we presented a combined RE assessment approach that highlighted the

importance of considering perceptions as part of the total evaluation (Napier, Mathiassen et al.

2006). Similarly, with respect to software process management, we found that the literature did

not explicitly address how organizations could leverage the existing knowledge found in legacy

software processes when reviving SPI initiatives. To address this, our SPR model developed

principles for reengineering software processes as organizations transition to more systematic

software process management (Napier, Kim et al. under review).

Second, identifying dualities prompted us to independently consider each perspective, thereby

increasing information available for improvement. For instance, with RE assessment, we found

the knowledge learned by combining both types of inquiry led to a richer diagnosis at TelSoft

(Napier, Mathiassen et al. 2006). With respect to SPI action planning, we demonstrated that

adopting either the repeat-ability or response-ability lens limited the diversity of resulting

recommendations (Napier, Mathiassen et al. 2006); instead, managers at TelSoft developed an

action plan that combined elements of both recommendations.

Third, identifying these dualities provided insights beyond the current emphasis on discipline

and agility (Boehm 2002; Boehm and Turner 2004; Lee, DeLone et al. 2006; Lee, DeLone et al.

2007). For instance considering contextual ambidexterity, performance management and

adaptability covered the recognized need for discipline and agility; adding social support,

alignment, and stretch acknowledged that organizational context and culture are also important

concerns for software managers. In this way, contextual ambidexterity can broaden the software

community‟s focus.

Design. The second research objective was to design interventions based on the identified

dualities to improve software practices. As summarized in chapter 4, we created two papers that

specifically addressed approaches for managing the dualities identified in RE assessment and

software process management (Napier, Mathiassen et al. 2006; Napier, Kim et al. under review).

Looking broadly at the goal of improving software practices, the GSU-TelSoft collaboration

itself was, in fact, an intervention designed to both improve software practices and increase

ambidexterity. Considering the TelSoft SPI effort through a contextual ambidexterity lens, the

intervention consisted of two primary activities: (1) establishing an effective organizational

context and (2) increasing the alignment and adaptability of specific improvement areas (e.g.

project portfolio management, quality assurance, configuration management, process

management) (Napier, Mathiassen et al. under review).

Contextual ambidexterity states that performance management and social support facilitate

ambidexterity and, consequently, organizational performance. The performance management

context represents systems, processes, and beliefs related to meeting performance objectives set

by the organization‟s management (Gibson and Birkinshaw 2004). Discipline is an attribute that

encourages people to voluntarily meet those objectives whereas stretch is an attribute that

encourages people to strive for even more ambitious goals (Ghoshal and Bartlett 1994). The

social support context represents systems, processes, and beliefs associated with member

relationships (Gibson and Birkinshaw 2004). Trust is an attribute of the organizational context

that encourages people to rely on one another whereas support is an attribute that empowers

people to lend assistance to others (Ghoshal and Bartlett 1994).

www.manaraa.com

 46

One of the main mechanisms we used to improve the performance management and social

support context at TelSoft was through establishing the PST, SCG, and improvement teams (for

more detail see Part III). Performance management was increased through these teams by

creating a shared ambition amongst team members, developing standards for the teams as well as

the development group, and ensuring the teams were provided with feedback on their work;

social support was improved through these teams by striving for broad employee participation

and providing the teams with autonomy (Ghoshal and Bartlett 1994). For example, as described

in (Napier, Mathiassen et al. under review), when the SCG was formed, a project plan was

created that explained the group‟s mission and proposed membership, a meeting with

participants was held to explain this mission, and a fixed agenda was created which specifically

listed the activities for the meeting. The group committed to meeting monthly, scheduling a

year‟s worth of meetings from the beginning. Leadership for a specific agenda item was

associated with each participant‟s regular job roles; therefore, they already had a personal stake

in the topic being discussed. The initial SCG meetings were spent creating standards for the

information that would be needed to enable decision making about project portfolio

management. By requesting specific information and discussing project status, the SCG held

TelSoft‟s project managers more accountable for project outcomes. The GSU researchers were

actively involved with the SCG as well as the other teams to provide immediate feedback and

guidance as needed.

The design for the SPI initiative at TelSoft considered building both alignment – the capacity of

employees within the business unit to work toward a common goal, and adaptability – the

capacity of the business unit to change quickly in response to dynamic market conditions

(Gibson and Birkinshaw 2004). To provide opportunities for increasing alignment, the

intervention plan specified seven improvement areas as the focus for SPI, established

improvement teams to work on specific objectives in one or more areas, and held the

improvement teams accountable by requiring periodic status reports and presentations to the

software development group. In addition, the SCG used input from the improvement teams to

create nine software policies which served as operating principles for software development (see

Part III, Appendix B.5). To encourage adaptability, we recommended that TelSoft abandon strict

command-and-control approaches and use governing principles and defined roles to become a

more adaptive enterprise (Haeckel 1995). Seen from the standpoint of sensing capability and

responding capability (Overby, Bharadwaj et al. 2006), TelSoft needed to combine the ability to

sense customer needs and technological and market opportunities while dynamically responding

once aware of suitable opportunities. The SCG and customer relations team led efforts to address

adaptability. These activities included increased emphasis on defining product strategy, actively

seeking business opportunities outside of the telecommunications market, and more frequent

face-to-face customer interactions.

Process. The third research objective was to investigate the process of becoming an

ambidextrous software organization. Although ambidexterity is increasingly acknowledged as an

important organizational capability, managers receive limited actionable advice on how it can be

developed. To provide insight into becoming ambidextrous, we focused on the process of

improving project portfolio management at TelSoft. More specifically, in paper 4 we analyzed

the development of the SCG and the interaction between organizational context and alignment-

www.manaraa.com

 47

adaptability (Napier, Mathiassen et al. under review). Drawing from Birkinshaw and Gibson‟s

arguments concerning contextual ambidexterity (2004) and Pettigrew‟s contextualist inquiry

(1985; 1987), we generated a process model showing how alignment and adaptability practices

improved over four phases of managed change: diagnosing, visioning, intervening, and

practicing.

This research model draws attention to the dynamics of change and the interactions between

process, context, and the content of planned change. For instance, we found that TelSoft first

dealt with contextual issues (social support and performance management) before realizing

improvements to content (alignment and adaptability). In fact, the main emphasis during the

visioning phase was not on improving ambidexterity per se, but rather on transforming the

context to better facilitate ambidexterity. Over time, managers should anticipate such shifts

between improvements in context and content. The analysis also showed that transformation of

context is not a simple progression of improvements. Although performance management and

social support at TelSoft both improved across the phases, setbacks were apparent, especially

during the intervening phase when social support suffered.

Prior research into ambidextrous organizations has considered ambidexterity as a property at the

organizational, business unit, and individual levels (Tushman and O'Reilly III 1996; Gibson and

Birkinshaw 2004). Our research also finds that the process of becoming ambidextrous can be

applied to specific managerial practices within the organization. TelSoft had a number of

management practices which might have been the focus of an innovation effort. At TelSoft, we

identified project portfolio management as a key managerial activity in which the firm‟s ability

to align and adapt was challenged.

5.2 Research Evaluation

In this section, we use six criteria for CPR-based action research to demonstrate validity of the

research results (Iversen, Mathiassen et al. 2004) as well as its limitations.

Roles. Establishing and keeping good relationships throughout all phases of the collaboration is

critical for action research. At the beginning of the TelSoft initiative, the researcher and

practitioner roles and responsibilities were clearly outlined in the memorandum of

understanding. The research team played a facilitative role (Baskerville and Wood-Harper 1998):

they were viewed as experts responsible for organizing the change process and doing the bulk of

the action involved, such as conducting the diagnostic interviews. My own role as a former

employee allowed me “insider” status with the software engineers at TelSoft, privileging me to

candid conversations about TelSoft management and skepticism about the possibility of change.

The practitioner role involved just the core members of the PST. These TelSoft employees were

supportive in terms of setting up meetings and introducing us to people. At this stage, most

TelSoft employees did more listening and responding instead of actively providing a vision of

something different that needed to be done in the future.

By the end of the initiative, the researchers‟ involvement changed from facilitative to

collaborative (Baskerville and Wood-Harper 1998). The practitioners took more ownership and

initiative in the SPI effort. During each intervention cycle, the PST increased participation of

TelSoft employees at all levels of the organization through the improvement teams. The VP of

www.manaraa.com

 48

Software ran the PST independently of the GSU research team. Finally, my insider status shifted

away from the software engineers toward the upper management team. While non-management

employees were still forthright when I asked questions of them directly, my access to divergent

opinions became much less frequent. At the same time, upper managers expressed company

problems through unsolicited emails and “off-the-record” comments.

Documentation. Developing and maintaining a case study database enhances the reliability of

qualitative research, permitting an independent audit of claims to be conducted (Yin 2003).

Although the four research papers differ in data analysis approach, they strive to demonstrate a

clear trace between data collected and conclusions drawn. Such traceability enhances the

credibility of claims made during data analysis (Miles and Huberman 1994). In the TelSoft case,

interviews, workshops, and meetings were recorded whenever feasible. The first sixteen SCG

meetings were transcribed to support paper 4. A designated note taker created public meeting

minutes for many of the PST and improvement team meetings. Other data sources included my

reflective field notes, TelSoft‟s process documentation database, and email messages between

GSU and TelSoft. The detailed account of the problem solving cycle in Part III provides an

overview of all data sources, how and when they were created, and how they related to

interventions into software practices at TelSoft. Also, a complete list of documents in the case

study database along with date created, primary author, and a brief description is provided in

Appendix A of Part III. This extensive documentation of the problem solving cycle allows other

researchers to recover the action research process as it unfolded (Checkland and Holwell 1998).

Control. Considering the nature of control in action research helps researchers evaluate project

risks such as whether theory will be allowed to influence actions at the client site. Avison et al.

(2001) describe control in terms of initiation, authority, and formalism. For the TelSoft case,

initiation was client-driven which meant that TelSoft‟s needs took priority over the need for

research data collection. Because we were flexible regarding the actual research areas studied,

this was not considered a problem. Since final authority on the project remained with the client,

there was the risk that the suggested actions would be rejected by TelSoft managers as

inappropriate. In our case, the research team respected the decisions of the managers, presented

convincing arguments for research-oriented activities (e.g. REGPG assessment, sense-and-

respond theoretical framing, recordings), and built trusting relationships over time. Therefore,

our suggestions were carefully considered and well received. With respect to formalism, the

memorandum of understanding included a clause that the project could be stopped at any time by

either the client or research team. Having an agreement with the top level of the organization,

CEO and VP of Software,was instrumental in maintaining the project even as key personnel

changed throughout the project (e.g. Dr. Roy Johnson, original Division President, Division

Director, and one of the original PST members).

Usefulness. In qualitative research in general, the applicability of the research findings to the

field setting is considered a valuable indicator of quality (Miles and Huberman 1994). Given the

goal of action research to deliver both to the scientific and practitioner communities (Rapoport

1970), the client‟s view of utility of the study becomes an important factor in determining the

quality of action research.

Research Results The key research findings that were applied at TelSoft were from paper 1 (i.e.

combining perceptions and processes during assessment) and paper 3 (i.e. implementing the SPR

www.manaraa.com

 49

model). Paper 2 and paper 4 were geared toward understanding practice after action had taken

place; therefore, those results did not directly inform action at TelSoft.

In paper 1, the combined RE assessment was designed to prompt the RE assessment manager to

consider both processes and perceptions. At TelSoft, the PST found this framework useful during

the diagnosing phase as reported in (Napier, Mathiassen et al. 2006). The diagnostic report was

validated by TelSoft managers as being accurate, and the resulting intervention strategy led to

considerable improvements at TelSoft. I also used this framework when planning the final

assessment as documented in chapter 5 of Part III. As the framework is tested in other settings,

we will be able to judge its utility to other researchers and practitioners. A limitation of this work

is that it does not provide a detailed description of the framework. This was due in part to the

space constraints of the conference proceedings. When extending these ideas for a journal, we

will consider adopting a design research approach (Hevner, March et al. 2004; Van Aken 2004)

focused on creating more complete guidelines and recommendations.

In paper 3, the SPR principles and model describe how an organization can exploit knowledge

from legacy processes during subsequent SPI initiatives. There were several ways that SPR

helped TelSoft transition to more disciplined software process management. Implementing SPR

allowed TelSoft to reduce its 75 legacy process to a more manageable 26. The PST created a list

of valid software processes and began to actively manage them using the implementation and

documentation statuses described in (Napier, Kim et al. under review). At the end of intervention

cycle 2, the PST accepted responsibility for ensuring that these processes would become updated

and meet the standards established by the process management team. Since that time, the PST

has involved a variety of people throughout the organization to assist with SPR; for example,

developers were asked to refine the coding guidelines for C++, Java, and REXX.

Practical results SPI success can be evaluated based upon a mixture of perceptions of SPI

success as well as measures of organizational performance such as cost reduction, cycle time

reduction, and customer satisfaction (Dyba 2005). Below, we summarize employee perceptions

of SPI as well indicators of improved software practice at TelSoft in the seven improvement

areas (summary appears in Table 13).

Overall, TelSoft‟s management team was pleased with the SPI initiative as demonstrated in this

email message from TelSoft‟s Vice President of Software Development (dated 9/25/2006):

“[The collaboration] It has been a good education experience for most of the

individuals in the software group, and by involving a large number of the software

employees in the process improvement initiatives it has demonstrated to the entire

group the importance of following a few key policies and processes to ensure that

we have an appropriate level of control and repeatability to maintain a successful

software business. We are seeing the benefits of the collaboration in better

portfolio planning and coordination, improved customer relations, less internal

strife over requirements management, fewer quality assurance (QA) cycles and

increased transparency of our configuration management.”

www.manaraa.com

 50

Based upon the success of this first initiative, TelSoft‟s management team funded an additional

12 month contract with the research team on enhancing project management skills.

During the learning phase, we developed an overall SPI assessment that included an REGPG

assessment, employee and customer interviews, as well as an employee online questionnaire (see

chapter 5 of Part III for details). The majority of employees agreed that the SPI initiative created

either “some improvement” or “considerable improvement” in software practices (as shown in

Figure 7). Broadly speaking, employees realized that process improvement was a legitimate

activity that received significant management support as indicated by these remarks:

 “I think people are at least more in tune to the fact that process is important.”

 “People think critically about our processes more now as a result of attention to these

issues.”

TelSoft made the most dramatic improvement in software configuration management (SCM) and

quality assurance. With respect to SCM, the new software release process defined during

intervention cycle 1 was consistently followed and allowed for early problem detection. In

addition, TelSoft documented reliable procedures for building most of its software products

which allowed them to rebuild the same version of software that its clients had. With respect to

QA, the policy requiring the QA group to execute software builds was strictly followed and very

positively perceived. Selected comments from employee questionnaire:

 “QA doing builds means they can trust the integrity of the builds”

 “I see much improvement in quality assurance and that entire process - more standardized

than what we had done previously and with QA doing builds it has forced us to document

all our build and deployment processes plus document release specifications.”

TelSoft also made noticeable improvements in customer relationship management. The initiative

emphasized the importance of maintaining a professional image. For instance, the customer

relations team enhanced product packaging for all software releases and drafted a “Getting

Started” brochure to be included with software packaging. In addition, TelSoft deliberately

increased face-to-face time with major customers; as a consequence, these relationships

improved. The software charter (i.e. reason for being, strategy, and policies) was communicated

to customers via letter and, in some cases, in person. Selected comments from questionnaire:

 “Much less squawking from employees and customers.”

 “Customer relations efforts - more focus on face/face and client communication channels;

also presentation of our software has also improved - looks more professional now.”

Although little to no change was perceived by employees for the remaining areas, there is still

important evidence of improvement. With respect to requirements management, the REGPG

assessment indicated that TelSoft‟s overall requirements maturity increased from Initial (level 1)

to Repeatable (level 2). In fact, TelSoft increased the percentage of best practices used in six of

the eight requirements areas and improved all of its weak areas to average. Participants also

agreed that TelSoft was more consistently documenting requirements on internal projects. With

respect to software vision management and project portfolio management, the SCG developed

and promoted the software strategy and division‟s reason for being; they developed a more

systematic, critical evaluation of current projects and business opportunities; and they mapped

www.manaraa.com

 51

out release schedule for products in a more collaborative way. These activities provided a

stronger foundation for continuous improvement at TelSoft.

Figure 7: Employee perception of overall

SPI impact

Table 13: Summary of Perceived Improvement

Improvement Area Overall Assessment

Software configuration

management

Considerable

improvement

Software quality

assurance

Considerable

improvement

Customer relations

management

Some improvement

Requirements

management

Little change

Software vision

management

Little change

Project portfolio

management

No change

End-user interaction No change

www.manaraa.com

 52

At the same time, this assessment revealed some limitations of the initiative. First, we could have

improved communication between management and non-management. Despite interim status

meetings, employees that did not participate on an SPI improvement team seemed unaware of

the changes being made. This suggests a need to intentionally involve a broader set of

individuals, particularly non-management employees, in the study. Second, there was still too

much variation in the way that internal projects were managed which caused them to be over

budget and TelSoft to losing propositions. After the initial diagnosis, TelSoft went through

another round of layoffs, losing its dedicated business analysts. Through the improved practices,

TelSoft became more consistent about having explicit and well-managed requirements for

internal projects. However, the quality of those requirements was not always high – they were

sometimes incomplete, did not consider what could go wrong, or did not involve inputs from

experienced software personnel. TelSoft‟s managers need to continue to monitor and take

corrective action on these problems. Third, TelSoft developed more plans and processes than

they had resources to implement. As one questionnaire respondent suggested: “Slow things down

somewhat - we probably really need to fully implement the initiatives prior to moving on to

another round. Or, I guess you could also say speed things up on the implementation.”

Theory. Action research is distinguished from consulting by the use of theory to inform action

and the application of theoretical frameworks to interpret findings (Baskerville and Wood-

Harper 1996). At TelSoft, the overall SPI initiative was informed by SPI theory in general

(McFeeley 1996; Mathiassen, Pries-Heje et al. 2002; Dyba 2005) and the sense-and-respond

framework (Haeckel 1995; Haeckel 1999) in particular as documented in chapter 3 of Part III. In

addition, each paper drew from a specific theoretical base and developed theoretical frameworks

as detailed in chapter 4 above. In paper 1, we developed an RE assessment framework that

combines perception-based and process-based data. In paper 2, we developed two theories

underlying the debate on plan-driven versus agile development. In paper 3, we defined SPR,

developed principles for conducting SPR, and presented an SPR model. In paper 4, we described

the process of building ambidextrous capability by focusing on project portfolio management.

Transfer. This work is based upon a study within a single software company with a particular

set of characteristics (e.g. low software process maturity, small setting, low organizational

maturity, etc.). We have argued that using a single case is appropriate given the nature of action

research, the similar characteristics that TelSoft shares with other small software organizations,

and the benefits of being able to explore longitudinal data. A limitation of this choice is that we

are unable to directly demonstrate that our conclusions will transfer in other settings. However,

we have included rich descriptions of the settings, processes and actions to establish external

validity, the domain to which findings can be generalized (Yin 2003). As further studies are

conducted that use these frameworks and ideas, we will be able to evaluate the applicability of

these findings for a variety of settings.

www.manaraa.com

 53

5.3 Implications

The key implications of this study are that improvement of software practices can benefit from:

1) Identifying dualities,

2) Appreciating the context,

3) Seeking ambidexterity at multiple levels, and

4) Re-conceptualizing ambidextrous software organizations.

Below, we discuss each of these implications from the standpoint of managers in charge of

improving software practices as well as researchers developing theories of SPI.

1) Identify Dualities. By identifying dualities and designing interventions, we found creative

alternatives to dominant paradigms and were able to integrate multiple perspectives. We have

demonstrated how taking this approach allowed us to obtain richer insights at TelSoft for RE

assessment, SPI action planning, and software process management (Napier, Mathiassen et al.

2006; Napier, Mathiassen et al. 2006; Napier, Kim et al. under review). Directly applying these

results provides specific implications for SPI managers. For example, with respect to RE

assessment, SPI managers could design an assessment plan that considers a mixture of

perceptions and processes. For SPI action planning, managers could evaluate their diagnosis data

from the standpoint of first the repeat-ability perspective and then the response-ability

perspective to increase the variety and quality of the recommendations. When establishing

software process management, managers should consider using the SPR model to exploit

learning from legacy processes. Future research can build upon the theories and frameworks

presented in this study by validating them in other settings.

In general, this research suggests that SPI managers and teams should intentionally look for

dualities during each phase of the SPI process (McFeeley 1996). Once dualities have been

identified, managers should consider how to embrace these tensions and integrate seemingly

contradictory elements. These managers, therefore, need to become better at paradoxical thinking

which considers both option A and option B instead of either option A or option B (Collins and

Porras 1994; Smith and Tushman 2005). Future research could develop strategies for SPI

managers who face these dualities.

2) Appreciate the Context. Organizational context refers to the environment in which the

software firm operates as well as the systems, processes, and beliefs within the organization

through which ideas for change have to proceed (Gibson and Birkinshaw 2004). Throughout this

research, important aspects of TelSoft‟s organizational context influenced our approach to

improving practices. For example, after learning that TelSoft‟s prior experience with SW-CMM

had created legacy processes, we implemented SPR (Napier, Kim et al. under review); realizing

that TelSoft valued being responsive to customers, we selected Haeckel‟s (1995; 1999) sense-

and-respond framework to drive improvements; recognizing some skepticism among TelSoft‟s

employees about the ability to change, we created improvement teams with employees from all

levels of the organization and used a variety of methods to disseminate information about the

initiative; and considering TelSoft‟s limited resources, we sought an alternative to structural

www.manaraa.com

 54

approaches to achieving ambidexterity (Napier, Mathiassen et al. under review). Ignoring these

aspects of TelSoft‟s context would have led us to apply generic solutions and blinded us to the

need for SPR and the potential usefulness of contextual ambidexterity.

The initial diagnosis of context can provide critical information for SPI. First, the analysis of the

initial context can dramatically influence the implementation plan for the overall improvement

initiative. For organizations, like TelSoft, that are diagnosed as weak in performance

management but stronger at social support, Gibson and Birkinshaw (2004) recommend to focus

first on performance management; by contrast, organizations with weak social support are

recommended to first work at increasing trust and support. Second, SPI managers could

intervene to intentionally shape the organizational context.. For example, SPI managers could

adopt the goal of increasing contextual ambidexterity by following a four-step process of

diagnosing, visioning, implementing, and performing (Napier, Mathiassen et al. under review).

Using this approach, SPI managers would explicitly measure the organizational context across

each phase, develop improvement goals, and design effective interventions. At TelSoft, we used

contextual ambidexterity retrospectively to analyze the SCG‟s actions with respect to project

portfolio management, but we used sense-and-respond framework and general SPI theory to

guide actions in the overall improvement initiative. An interesting possibility for future research

would be to conduct an action research study in which contextual ambidexterity is the driver for

change.

Another area for future research involves how organizational context is measured. Although

Gibson and Birkinshaw‟s (2004) model of organizational context consisted of two constructs,

future research can explore whether other aspects of organizational context are more salient. For

example, we found that TelSoft was particularly impacted by historical events such as the prior

SPI initiative and unsuccessful product innovation attempts.

3) Seek Ambidexterity at Multiple Levels. The software community has approached the idea

of ambidexterity from primarily two levels: 1) creating ambidextrous projects that are both

rigorous and agile (Boehm 2002; Lee, DeLone et al. 2006; Lee, DeLone et al. 2007) or 2)

developing ambidextrous organizations that have separate sub-units focused on either discipline

or agility (Vinekar, Slinkman et al. 2006). Ambidexterity can also be a characteristic of

individuals within the organization. In addition, this research has looked at ambidexterity from

the perspective of specific software practices. With project portfolio management practices, we

designed the SCG to focus on both managing projects with its existing customer base and

obtaining new customers.

Future research could develop a framework for understanding ambidexterity that takes these

multiple levels under consideration. This is particularly true when studying the process of

increasing ambidexterity. As SPI managers engage in action planning, they need theories that

can guide them toward increasing ambidexterity within their organizations. Questions for future

research that looks across levels include: What level of ambidexterity has the biggest impact on

performance? What is the relative importance of ambidexterity at each level? How does

ambidexterity at one level relate to ambidexterity at another level? Is there a preferred sequence

for building ambidexterity at these levels? Is it possible to have an ambidextrous organization

without having ambidextrous individuals?

www.manaraa.com

 55

4) Re-conceptualize Ambidextrous Software Organizations. Prior to this research, the term

“ambidextrous software organization” has been defined in terms of an agile and traditional sub-

unit with separate cultures and practices (Vinekar, Slinkman et al. 2006). However, we have

argued that this structural approach to achieving ambidexterity is not feasible for all software

organizations and have presented contextual ambidexterity as an alternative. Under certain

circumstances, instead of accepting two separate cultures within software organizations,

managers could focus on building a single culture that facilitates ambidexterity. Future research

could provide more specific guidance for the conditions in which one form of ambidexterity is

preferred over the other. At the same time, future research could consider the extent to which

structural and contextual ambidexterity can be effectively integrated within a single

organizations: In what ways can software organization combine structural and contextual

ambidexterity? What is the impact of these various ambidextrous forms on organizational

performance?

Research Summary. This work goes beyond the discipline-agility software debate to broaden

our understanding of the dualities involved in improving software practice. We identified three

new dualities in the areas of RE assessment, SPI action planning, and software process

management; and we applied the existing duality of alignment-adaptability to project portfolio

management and the entire SPI effort. We argued for the limitations of applying structural

ambidexterity solutions within small software organizations; instead, we adopted an alternative

view of ambidextrous software organizations based upon contextual ambidexterity. We

demonstrated the feasibility of applying the contextual ambidexterity lens through a detailed case

study showing the process of improving project portfolio management at TelSoft. Overall, we

suggest that software organizations can be improved by creating a conducive, organizational

context and by iteratively increasing the alignment and adaptability of vital software practices.

www.manaraa.com

 56

References

Adler, P. S., B. Goldoftas, et al. (1999). "Flexibility versus efficiency? A case study of model

changeovers in the Toyota production system." Organization Science 10(1): 43-68.

Adler, P. S., F. McGarry, et al. (2005). "Enabling process discipline: lessons from the journey to

CMM level 5." MIS Quarterly Executive 4(1): 215-226.

Agile Alliance. (2001). "Manifesto for agile software development." Retrieved May, 2006,

from http://www.agilemanifesto.org/.

Argyris, C. (1985). Action Science. San Francisco, Jossey-Bass.

Avison, D., R. Baskerville, et al. (2001). "Controlling action research projects." Information

Technology & People 14(1): 28-45.

Avison, D., F. Lau, et al. (1999). "Action research." Communications of the ACM 42(1): 94-97.

Avison, D. and T. Wood-Harper (1990). Multiview: an exploration in information systems

development. New York, McGraw-Hill.

Baker, S. (2005). Formalizing agility: an agile organization's journey toward CMMI

accreditation. Agile Conference.

Barley, S. R. and G. Kunda (2001). "Bringing work back in." Organization Science 12(1): 76-95.

Baskerville, R. and T. Wood-Harper (1996). "A critical perspective on action research as a

method for information systems research." Journal of Information Technology 11: 235-

246.

Baskerville, R. and T. Wood-Harper (1998). "Diversity in information systems action research

methods." European Journal of Information Systems 7(2): 90-107.

Baskerville, R. L. (1999). "Investigating information systems with action research."

Communications of the AIS 2(19): 1-32.

Baum, J. A. C., S. X. Li, et al. (2000). "Making the next move: How experiential and vicarious

learning shape the locations of chains' acquisitions." Administrative Science Quarterly

45(4): 766-801.

Beck, K. (1999). Extreme Programming Explained: Embrace Change. Reading, MA, Addison-

Wesley.

Beecham, S., T. Hall, et al. (2005). "Defining a requirements process improvement model."

Software Quality Journal 13(3): 247-279.

Benner, M. J. and M. Tushman (2002). "Process management and technological innovation: A

longitudinal study of the photography and paint industries." Administrative Science

Quarterly 47(4): 676-709.

Benner, M. J. and M. L. Tushman (2003). "Exploitation, exploration, and process management:

The productivity dilemma revisited." Academy of Management Journal 28(2): 238-256.

Birkinshaw, J. and C. Gibson (2004). "Building ambidexterity into an organization." Sloan

Management Review 45(4): 47-55.

Boehm, B. W. (2002). "Get ready for agile methods, with care." Computer 35(1): 64-69.

Boehm, B. W. and R. Turner (2004). Balancing agility and discipline: a guide for the perplexed.

Boston, Addison-Wesley.

Checkland, P. and S. Holwell (1998). "Action research: its nature and validity." Systemic

Practice and Action Research 11(1): 9-21.

Clark, K. B. and S. C. Wheelwright (1992). "Organizing and leading „heavyweight‟ development

Teams." California Management Review 34(3): 9-28.

www.manaraa.com

 57

CMMI Product Team (2002). CMMI for Systems Engineering/Software Engineering/Integrated

Product and Process Development/Supplier Sourcing, Software Engineering Institute.

Cockburn, A. (2000). Writing Effective Use Cases. Reading, MA, Addison-Wesley.

Collins, J. C. and J. I. Porras (1994). Built to Last: Successful Habits of Visionary Companies.

New York, HarperCollins Publishers.

Cook, S. D. N. and J. S. Brown (1999). "Bridging epistemologies: The generative dance between

organizational knowledge and organizational knowing." Organization Science 10(4):

381-400.

Cunningham, J. B. (1993). Action research and organizational development. Westport, CT,

Praeger.

Curtis, B., W. E. Hefley, et al. (2002). People Capability Maturity Model: Guidelines for

Improving the Workforce. Boston, Addison-Wesley.

Davison, R. M., M. G. Martinsons, et al. (2004). "Principles of canonical action research."

Information Systems Journal 14(1): 65-86.

De Reyck, B., Y. Grushka-Cockayne, et al. (2005). "The impact of project portfolio management

on information technology projects." International Journal of Project Management 23(7):

524-537.

Deming, W. E. (1986). Out of Crisis. Cambridge, MA, MIT Center of Advanced Engineering

Study.

Duncan, R. B. (1976). "The ambidextrous organization: Designing dual structures for

innovation." Kilmann, RH Pondy, LR, and DP Slevin (eds.). The Management of

Organization Design, I, New York: Elsevier North-Holland: 167-188.

Dyba, T. (2005). "An empirical investigation of the key factors for success in software process

improvement." IEEE Transactions on Software Engineering 31(5): 410.

El Emam, K. and A. Birk (2000). "Validating the ISO/IEC 15504 measure of software

requirements analysis process capability." IEEE Transactions on Software Engineering

26(6): 541.

Floyd, S. and P. Lane (2000). "Strategizing throughout the organization: Managing role conflict

in strategic renewal." Academy of Management Review 25: 154-177.

Fuggetta, A. (2001). Software process: A roadmap. Software Process Improvement. R. Hunter

and R. H. Thayer. Los Alamitos, CA, IEEE Computer Society: 559-566.

Ghoshal, S. and C. A. Bartlett (1994). "Linking organizational context and managerial action:

The dimensions of quality of management." Strategic Management Journal 15(Summer):

91-112.

Gibson, C. and J. Birkinshaw (2004). "The antecedents, consequences, and mediating role of

organizational amidexterity." Academy of Management Journal 47(2): 209-226.

Goldenson, D. R. and J. D. Herbsleb (1995). After the appraisal: a systematic survey of process

improvement, its benefits, and factors that influence success. Pittsburgh, PA, Software

Engineering Institute.

Gregor, S. (2006). "The nature of theory in information systems." MIS Quarterly 30(3): 611-642.

Gupta, A., K. Smith, et al. (2006). "The interplay between exploration and exploitation."

Academy of Management Journal 49(4): 693-706.

Haeckel, S. (1995). "Adaptive enterprise design: the sense-and-respond model." Planning

Review 23(3): 6-13, 42.

Haeckel, S. (1999). Adaptive Enterprise: Creating and Leading Sense-and-Respond

Organizations. Boston, MA, Harvard Business School Press.

www.manaraa.com

 58

He, Z.-L. and P.-K. Wong (2004). "Exploration vs. exploitation: An empirical test of the

ambidexterity hypothesis." Organization Science 15(4): 481-494.

Hevner, A. R., S. T. March, et al. (2004). "Design Science in Information Systems Research."

MIS Quarterly 28(1): 75-105.

Highsmith, J. (2000). Adaptive Software Development: A Collaborative Approach to Managing

Complex Systems. New York, NY, Dorset House Publishing.

Highsmith, J. and A. Cockburn (2001). "Agile software development: The business of

innovation." Computer 34(9): 120-127.

Hobday, M. (2000). "The project-based organisation: an ideal form for managing complex

products and systems." Research Policy 29(7-8): 871-893.

Horvat, R. V., I. Rozman, et al. (2000). "Managing the complexity of SPI in small companies."

Software Process: Improvement and Practice 5(1): 45-54.

Humphrey, W. S. (1989). Managing the Software Process. Boston, MA, Addison-Wesley.

Iversen, J., L. Mathiassen, et al. (2004). "Managing risk in software process improvement: an

action research approach." MIS Quarterly 28(3): 395-433.

Iversen, J., P. A. Nielsen, et al. (2002). Problem diagnosis in SPI. Improving Software

Organizations: From Principles to Practice. L. Mathiassen, J. Pries-Heje and O.

Ngwenyama. New York, Addison-Wesley.

Jansen, J. J. P., F. A. J. van Den Bosch, et al. (2005). "Exploratory innovation, exploitative

innovation, and ambidexterity: The impact of environmental and organizational

antecedents." Schmalenbach Business Review 57: 351-363.

Kautz, K. H., H. W. Hansen, et al. (2000). Applying and adjusting a software process

improvement model in practice: The use of the IDEAL model in a small software

enterprise. International Conference on Software Engineering, Limerick, Ireland.

Kock, N. (1997). "Negotiating mutually satisfying IS action research topics with organizations:

An analysis of Rapoport's initiative dilemma." Journal of Workplace Learning 9(7): 253-

62.

Krasner, H., J. Terrel, et al. (1992). "Lessons learned from a software process modeling system."

Communications of the ACM 35(9): 91-100.

Kuvaja, P. and A. Bicego (1994). "BOOTSTRAP - a European Assessment Methodology."

Software Quality Journal 3(3): 117-127.

Langley, A. (1999). "Strategies for theorizing from process data." Academy of Management

Review 24(4): 691-710.

Lee, G., W. DeLone, et al. (2006). "Ambidextrous coping strategies in globally distributed

software development projects." Communications of the ACM 49(10): 35-40.

Lee, G., W. DeLone, et al. (2007). "Ambidexterity and global IS project success: A theoretical

model." 40th Annual Hawaii International Conference on System Sciences 44-54.

Lincoln, Y. and E. Guba (1985). Naturalistic Inquiry. Newbury, CA, Sage.

Lindgren, R., O. Henfridsson, et al. (2004). "Design principles for competence management

systems: A synthesis of an action research study." MIS Quarterly 28(3): 435–472.

Lubatkin, M. H., Z. Simsek, et al. (2006). "Ambidexterity and performance in small-to medium-

sized firms: The pivotal role of top management team behavioral integration." Journal of

Management 32(5): 646-672.

Lyytinen, K. (1988). "Stakeholders, IS failures and soft system methodology: an assessment."

Journal of Applied Systems Analysis 15: 61-81.

www.manaraa.com

 59

March, J. G. (1991). "Exploration and exploitation in organizational learning." Organization

Science 2(1): 71-87.

Markowitz, H. (1952). "Portfolio Selection." The Journal of Finance 7(1): 77-91.

Mårtensson, P. and A. S. Lee (2004). "Dialogical action research at Omega Corporation." MIS

Quarterly 28(3): 507-536.

Mason, J. (2002). Qualitative Researching. London, Sage.

Mathiassen, L. (2002). "Collaborative practice research." Information Technology & People

15(4): 321-345.

Mathiassen, L., J. Pries-Heje, et al. (2002). Improving Software Organizations: From Principles

to Practice. Boston, MA, Addison-Wesley.

Mathiassen, L. and A. M. Vainio (2007). "Dynamic capabilities in small software firms: a sense-

and-respond approach." IEEE Transactions on Engineering Management 54 (3): 522-538.

McFarlan, F. W. (1981). "Portfolio approach to information systems." Harvard Business Review

59(5): 142-150.

McFeeley, B. (1996). IDEAL: A user's guide for software process improvement. Pittsburgh, PA,

Software Engineering Institute.

McKay, J. and P. Marshall (2001). "The dual imperatives of action research." Information

Technology & People 14(1): 46-59.

Miles, M. B. and A. M. Huberman (1994). Qualitative Data Analysis: an expanded sourcebook.

Thousand Oaks, Sage Publications.

Mingers, J. (2001). "Combining IS research methods: Towards a pluralist methodology."

Information Systems Research 12(3): 240-259.

Mingers, J. and A. Gill (1997). Multimethodology: The theory and practice of combining

management science methodologies. Chichester, John Wiley & Sons.

Napier, N. P., J. Kim, et al. (under review). "Software process reengineering: A model and its

application to an industrial case study." IEEE Transactions on Software Engineering.

Napier, N. P., L. Mathiassen, et al. (2006). Negotiating Response-ability and Repeat-ability in

Requirements Engineering. International Conference on Information Systems,

Milwaukee, Wisconsin.

Napier, N. P., L. Mathiassen, et al. (2006). Perceptions and Processes in assessing software

requirements practices. Proceedings of the Twelfth Americas Conference on Information

Systems, Acapulco, Mexico.

Napier, N. P., L. Mathiassen, et al. (under review). "Becoming ambidexterous: A contextualist

inquiry into a small software firm." Organization Science.

Nielsen, P. A. and J. Pries-Heje (2002). A framework for selecting an assessment strategy.

Improving software organizations: from principles to practice. L. Mathiassen, J. Pries-

Heje and O. Ngwenyama, Addison-Wesley.

O'Reilly III, C. A. and M. Tushman (2004). "The ambidextrous organization." Harvard Business

Review 82(4): 74-81.

Orlikowski, W. and J. J. Baroudi (1991). "Studying information technology in organizations:

research approaches and assumptions." Information Systems Research 2(1): 1-28.

Overby, E., A. Bharadwaj, et al. (2006). "Enterprise agility and the enabling role of information

technology." European Journal of Information Systems 15(2): 120-131.

Paulk, M. (2001). "Extreme programming from a CMM perspective." IEEE Software 18(6): 19-

26.

www.manaraa.com

 60

Paulk, M., B. Curtis, et al. (1993). Capability Maturity Model for Software, Version 1.1.

Pittsburgh, PA, Software Engineering Institute.

Paulk, M., C. V. Weber, et al., Eds. (1995). The Capability maturity model: guidelines for

improving the software process. SEI Series in Software Engineering. Boston, Addison-

Wesley.

Pettigrew, A. M. (1985). Contextualist Research: A Natural Way to Link Theory and Practice.

Doing Research That is Useful for Theory and Practice. E. E. Lawler. San Francisco,

Jossey-Bass.

Pettigrew, A. M. (1987). "Context and action in the transformation of the firm." Journal of

Management Studies 24(6): 649-670.

Pettigrew, A. M. (1990). "Longitudinal field research on change: theory and practice."

Organization Science 1(3): 267-292.

Pouloudi, A. and E. Whitley (1997). "Stakeholder identification in inter-organizational systems:

gaining insights for drug use management systems." European Journal of Information

Systems 6(1): 1-14.

Ramesh, B., J. Pries-Heje, et al. (2002). Internet software engineering: a different class of

processes. Annals of software engineering, Kluwer Academic Publishers. 14: 169-195.

Rapoport, R. (1970). "Three dilemmas in action research." Human Relations 23(6): 499-513.

Rising, L. and N. S. Janoff (2000). "The Scrum software development process for small teams."

IEEE Software 17(4): 26-32.

Rout, T. P. (1995). "SPICE: A framework for software process assessment." Software Process:

Improvement and Practice 1(1): 57-66.

Salo, O. and P. Abrahamsson (2005). Integrating agile software development and software

process improvement: a longitudinal case study. International Symposium on Empirical

Software Engineering.

Schwaber, K. and M. Beedle (2001). Agile Software Development with Scrum. Upper Saddle

River, Prentice Hall.

Smith, W. K. and M. L. Tushman (2005). "Managing strategic contradictions: A top

management model for managing innovation streams." Organization Science 16(5): 522-

536.

Software Engineering Institute (2006). Improving Processes in Small Settings (IPSS): A White

Paper. Pittsburgh, PA, Carnegie Mellon University.

Sommerville, I. and J. Ransom (2005). "An empirical study of industrial requirements

engineering process assessment and improvement." ACM Transactions on Software

Engineering and Methodology 14(1): 85-117.

Sommerville, I. and P. Sawyer (1997). Requirements Engineering: A Good Practice Guide. New

York, NY, John Wiley & Sons.

Susman, G. and R. Evered (1978). "An assessment of the scientific merits of action research."

Administrative Science Quarterly 23(4): 582-603.

The Standish Group International. (2004). "2004 Third Quarter Research Report." from URL

http://standishgroup.com/sample_research/PDFpages/q3-spotlight.pdf.

Turk, D., R. France, et al. (2005). "Assumptions underlying agile software-development

processes." Journal of Database Management 16(4): 62-87.

Tushman, M. and C. A. O'Reilly III (1996). "Ambidextrous organizations: Managing

evolutionary and revolutionary change." California Management Review 38(4): 8-30.

www.manaraa.com

 61

Van Aken, J. E. (2004). "Management research based on the paradigm of the design sciences:

The quest for field-tested and grounded technological rules." Journal of Management

Studies 41(2): 219-246.

Van de Ven, A. and M. Poole (1995). "Explaining development and change in organizations."

Academy of Management Review 20(3): 510-540.

Vidgen, R. (1997). "Stakeholders, soft systems and technology: separation and mediation in the

analysis of information system requirements." Information Systems Journal 7(1): 21-46.

Vinekar, V., C. W. Slinkman, et al. (2006). "Can agile and traditional systems development

approaches coexist? An ambidextrous view." Information Systems Management 23(3):

31-42.

Weitzman, E. A. and M. B. Miles (1995). Computer Programs for Qualitative Data Analysis.

Thousand Oaks, CA, Sage.

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge,

Cambridge University Press.

Yin, R. K. (2003). Case Study Research: Design and Methods. Thousand Oaks, Sage.

Zbaracki, M. J. (1998). "The rhetoric and reality of total quality management." Administrative

Science Quarterly 43(3): 602-636.

www.manaraa.com

 62

Part II: Research Papers

www.manaraa.com

 63

Paper 1: Combining Perceptions and Processes

Title: Perceptions and Processes in Assessing Software Requirements Practices

This paper is coauthored by Nannette Napier, Lars Mathiassen, and

Roy D. Johnson

This version of the paper was accepted and presented at the

America’s Conference on Information Systems (AMCIS),

Acapulco, Mexico, 2006

www.manaraa.com

Paper 1: Combining Perceptions and Processes 64

Abstract
Requirements engineering is a key discipline in analysis and design of business software. There

are commonly accepted processes available for requirements engineering, but many

organizations struggle to implement and follow these processes. A number of methods have

therefore been developed to help assess and improve requirements practices. This exploratory

study reports from a project at TelSoft in which we combined process assessments and

stakeholder perceptions to arrive at recommendations for improving requirements practices. The

paper presents the combined approach, experiences from using the approach at TelSoft, and the

resulting insights and recommendations. On that basis, we offer a critical evaluation of the

dominant process-driven approach and show how requirements assessment can benefit from the

perceptions and active participation of key stakeholders.

Keywords
Requirements engineering assessment, process models, stakeholder perceptions, Requirements

Engineering Good Practice Guide (REGPG).

Introduction
Requirements Engineering (RE) covers all aspects of the discovery, documentation, and

maintenance of software requirements throughout the software development lifecycle (Kotonya

and Sommerville, 1998). RE is a key discipline in analysis and design of business software.

Companies looking to improve their RE practices may seek guidance from the Software

Engineering Institute‟s Capability Maturity Model Integration (CMMI Product Team, 2002).

This model defines two key process areas – Requirements Management and Requirements

Development – directly related to requirements engineering and lists best practices in these areas.

Despite the existence of these process descriptions and best practices, many organizations

struggle to implement and follow these procedures. In fact, an expert panel consisting of both

practitioners and academics agreed that the RE process is the most problematic of all software

engineering activities (Beecham, Hall, Britton, Cottee and Rainer, 2005a). Furthermore,

practicing software project managers ranked the problem of misunderstood software

requirements as their second most important risk to be managed (Schmidt, Lyytinen, Keil and

Cule, 2001).

Companies seeking to improve their RE practices are recommended to assess these practices to

identify strengths and weaknesses and help focus the improvement efforts (Curtis and Paulk,

1993; Humphrey, 1989). A number of methods have been developed to that end (e.g., Beecham,

Hall and Rainer, 2005b; El Emam and Madhavji, 1995; Sommerville and Sawyer, 1997). While

there are important variations between these assessment approaches, they all rely on the basic

idea that current practices are best assessed and improved by benchmarking against best

practices. This process-driven approach to assess RE practices has obvious advantages, but it

ignores two important lessons from organizational learning. First, organizational stakeholders‟

perceptions of current and future practices are important sources for innovation and learning.

Second, participatory approaches increase buy-in and thereby facilitate successful

implementation of new practices.

www.manaraa.com

Paper 1: Combining Perceptions and Processes 65

This research is therefore designed to explore how assessments of RE practices can benefit from

the perceptions and active participation of key stakeholders. To this end, we conducted a

systematic assessment of RE practices in a small software firm, TelSoft, addressing the following

research questions:

1. What different insights are gained from process- and perception-driven assessments of

RE practices?

2. How can processes and perceptions be combined in assessment of RE practices?

Theoretical Background
In the following, we review existing process-driven approaches to assess RE practices and

outline the theoretical basis for perception-driven approaches.

Current approaches to RE assessment
Researchers have used three main approaches to RE assessment: analyzing the RE-related data

from generic software process assessments (e.g., SW-CMM or ISO/IEC 15504); applying a RE-

specific version of the SW-CMM; and, measuring adherence to best practices based on a

dedicated RE maturity model.

The first approach relies on general models for software process assessment. For example, El

Emam and Birk (2000) used a subset of the assessment data collected from 44 organizations

during the ISO/IEC 15504 trials (Simon, 1996) to examine whether the Software Requirements

Analysis process capability is positively related to overall project performance. Damian et al.

(2004) similarly studied the benefits of RE process improvement using SW-CMM mini-

assessments.

The second approach relies on specific RE models. Beecham and colleagues have developed a

RE model based upon the SW-CMM called R-CMM (Beecham et al., 2005b). Their approach is

based on the Goal-Question-Metric paradigm (Basili and Rombach, 1988). They associate high-

level RE goals with the different maturity levels from initial (level 1) to optimizing (level 5). An

example of a high-level goal to achieve level 2 is “to implement a repeatable RE process”

(Beecham et al., 2005b). Related to each goal is a set of assessment questions to ask about RE

processes and their relation to best practices. Weaknesses pointed out in the analysis are then

used to suggest RE improvement goals.

The third approach is uniquely focused on RE as suggested in the Requirements Engineering

Good Practice Guide (REGPG) (Sommerville et al., 1997). The REGPG describes 66 RE

practices within eight areas of RE – requirements documents, requirements elicitation,

requirements analysis and negotiation, describing requirements, system modeling, requirements

validation, requirements management, and requirements engineering for critical systems. Each

normative practice is related to one of three levels of maturity: basic, intermediate, or advanced.

The assessment rates how each practice is adopted within the organization: not used,

discretionary based upon the project manager, normally used, or standardized throughout the

organization. A score is then calculated to create an overall assessment of the organization‟s RE

maturity level. The REGPG has been used to assess ERP RE processes (Daneva, 2002; Daneva,

www.manaraa.com

Paper 1: Combining Perceptions and Processes 66

2003), to develop a formal assessment instrument (Niazi, 2005), and to suggest general success

criteria for RE improvements (Kauppinen, Aaltio and Kujala, 2002; Kauppinen, Vartiainen,

Kontio, Kujala and Sulonen, 2004). Sommerville and Ransom (2005) provide recommendations

for adapting the model such as having domain-specific assignment of practices to maturity

levels; creating domain-specific versions of the model; and, focusing on the business benefits of

improving RE practice.

While there are important variations between these assessment approaches, they all analyze the

gap between standardized RE processes and current practices. A process model drives data

collection and analysis; specifies which practices should be adopted; and, outlines priorities to

effectively increase RE maturity. Although all three approaches acknowledge the importance of

tailoring assessments to organizational needs, they each assume that RE is best assessed and

improved by benchmarking against best practices (Nielsen and Pries-Heje, 2002).

An alternative approach
An alternative approach to RE assessment would privilege perceived problems over prescribed

processes (Nielsen et al., 2002). In this approach, stakeholder perceptions about strengths,

weaknesses, and opportunities related to RE activities and artifacts drive data collection and

analysis; stakeholders, rather than models, determine what is important to study by assigning

priorities to problems; and, solutions are grounded in the specific context of the problematic

situation.

Such a perception-based approach borrows from general stakeholder analysis (Lyytinen, 1988;

Pouloudi and Whitley, 1997; Vidgen, 1997). Like interpretive research, stakeholder analysis

considers organizational actors‟ subjective meanings as important knowledge sources; therefore,

they emphasize the specific terms and perceptions of each stakeholder and avoid presenting a

priori concepts (Orlikowski and Baroudi, 1991). Soft Systems Methodology (SSM) is an

example of a qualitative, interpretive approach to study information systems issues based on

stakeholder perceptions (Checkland and Scholes, 1999; Frederiksen and Mathiassen, 2005).

The process-driven approach to assess RE practices has obvious advantages: it provides the

organization with new insights on RE; it makes comparisons across organizations feasible; it

supports a structured and easy-to-adopt assessment approach; and, it leads to an immediate set of

recommendations for improvement. However, organizational stakeholders‟ perceptions of

current and future practices are also important sources for innovation and learning. Furthermore,

process-driven approaches do not engage stakeholders in ways that increase buy-in and facilitate

successful implementation of new practices. For these reasons, we recommend combining

process-driven and perception-driven approaches. Methodological pluralism is appropriate for

RE assessment because highly complex real-world problems call for multiple perspectives to

understand their richness (Mingers, 2001; Mingers and Gill, 1997).

A combined approach
Our combined approach to RE assessment consists of three steps: initiating the assessment,

executing multiple inquiry cycles, and making recommendations based upon the findings.

First, the RE assessment is initiated. Prior literature has identified several success factors for RE

process improvement, including management support, motivation and commitment of other

employees, and a systematic implementation strategy (Kauppinen et al., 2004). Therefore, it is

www.manaraa.com

Paper 1: Combining Perceptions and Processes 67

important to actively involve key stakeholders in the assessment and provide adequate structure

when designing the assessment. The objective of this step is to establish commitment, select an

assessment strategy, and agree on an overall plan for the inquiry cycles and the recommendation

step. Three dimensions to consider when selecting an assessment strategy include required level

of rigor, degree of reliance on a specific process model, and whether outside consultants should

lead the assessment (Nielsen et al., 2002). The output of this step is commitments from key

stakeholders to an RE assessment plan.

The next step is to understand the current state of RE practice through a series of inquiry cycles.

Each inquiry cycle, whether perception-driven or process-driven, involves engaging

stakeholders, collecting data, analyzing data, and debating findings. Perception-driven inquiry

captures data about individual beliefs and experiences in the specific context of the problematic

situation. Process-driven inquiry captures data on how current practices benchmark against pre-

defined processes, best practice, and pre-defined questions. In all cases, information learned from

each cycle feeds into the next inquiry cycle. The outcomes from this step include a prioritized list

of problems as well as opportunities for improvement.

Finally, the knowledge learned from the inquiry cycles is used to make recommendations. A

feasible approach to turning these insights into improved requirements practices is to align with

the organizations priorities, traditions, and culture. It is also important to show business benefit

to the proposed initiatives (Kauppinen et al., 2004; Sommerville et al., 2005). To ensure this, the

recommendations should suggest an overall improvement strategy, establish project teams that

focus on making visible, short-term investments in requirements practices, and consider the

appropriate sequencing of improvement efforts (Humphrey, 1989).

Figure 8: Combined RE Assessment Approach

www.manaraa.com

Paper 1: Combining Perceptions and Processes 68

Research Method
We adopted a case study (Yin, 2003) based on action research (Baskerville, 1998; Rapoport,

1970; Susman and Evered, 1978). This allowed us to discover differences in insights from

process- and perception-driven assessments and to explore practical ways to combine the two

perspectives into a comprehensive RE assessment approach. In this section, we provide

background information about the research site and describe the research approach in detail.

Research site
TelSoft was founded in 1971, with the mission to be a premier software services firm in the

telecommunications and utility industries. The company has approximately 500 employees with

50 dedicated to software development. Many of the same employees that helped found the

organization 35 years ago are still employed, bringing both a wealth of experience and old

habits. One of the authors had previously worked at TelSoft, which allowed the research team

immediate and deep engagement. It also provided a solid understanding of the context and

acceptance of the R&D collaboration by TelSoft employees.

TelSoft emerged as an ideal site because the company was experiencing significant problems

related to RE issues. For example, TelSoft depended on a few very large customers that

constantly required software engineers to respond to requirements changes. Also, these

customers had different requirements elicitation and documentation processes in place, and

TelSoft was requested to adapt to each of these. Finally, the resulting software releases were

often shipped with deviations from agreed upon requirements. TelSoft had previously been

engaged in improving RE practices through a CMM-based initiative. While this effort resulted in

documented new processes, these processes were not appropriate for the culture and business

realities at TelSoft. Therefore, no sustainable changes had been implemented into RE practices.

Industry-research collaboration
To address these problems, a Collaborative Practice Research (Mathiassen, 2002) project was

initiated between TelSoft and the authors. This research model focuses on understanding,

supporting, and improving software practices; it relies on strong collaboration between

practitioners and researchers; and, it seeks to develop relevant contributions based on rigorous

research practices.

In seeking new approaches to problem solving in a business environment, Kock and Lau (2001)

propose that action research is most appropriate. Specifically, we followed the recommendations

of McKay & Marshall (2001) by implementing two interacting cycles of practical problem

solving (leading to improvements at TelSoft) and research (leading to contributions to the

literature). We implemented that by following the IDEAL model for improving software

practices (McFeeley, 1996). This particular research article focus on information gathered during

the “D” phase or “Diagnosing” (see Figure 9).

www.manaraa.com

Paper 1: Combining Perceptions and Processes 69

Figure 9: IDEAL Model (McFeeley, 1996)

Stimulus for
improvement

Set context &
Establish

sponsorship

Establish

infra-
structure

Appraise &
Characterize

current process

Develop recommendations

& Document results

Set strategy &
Priorities

Establish

process action
teams & Action

plans

Define processes & measures

Plan & Execute pilots
Plan. Execute, & Track installation

Document &

Analyze lessons

Revise

organizational
approach

INITIATING

DIAGNO-
SING

ESTABLISH-
MENT

ACTING
LEARNING

The research project was managed by two teams: the Steering Committee and the Problem

Solving Team. The Steering Committee was composed of the three researchers and TelSoft‟s

chief executive officer, division president, and vice president of software development. Meetings

were held on a quarterly basis and used to set strategic direction for the improvement initiative.

The Problem Solving Team (PST) was composed of the three researchers and TelSoft‟s vice

president of software development and three mid-level managers. The PST met monthly to

manage operational aspects of the improvement initiative.

Figure 10: Managing Collaborative Practice Research

Assessment Experience and Results
From December 2004 to May 2005, we conducted an RE assessment at TelSoft using this

combined approach. The effort involved 22 semi-structured interviews, two 3-hour workshops, a

standardized assessment, and nearly a dozen meetings of the problem-solving and research

 CEO

 VP of Software

Development

 Division President

TelSoft

 VP of Software

Development

 3 Managers

Steering

Committee

Problem

Solving Team

(PST)

 3 researchers

 3 researchers

Research

Team

www.manaraa.com

Paper 1: Combining Perceptions and Processes 70

teams. In this section, we briefly describe how we collected, analyzed, and interpreted data on

RE practices as well as arrived at key recommendations.

Step 1: Initiate assessment
The RE assessment was managed by the Problem Solving Team (PST). The goals of the

assessment were to determine strengths and weaknesses of the existing RE practices and to

identify improvement opportunities. Based upon these goals, the primary assessment strategy

was perception-driven. The PST identified three stakeholder groups actively involved in creating

and managing requirements: software development, internal customers, and external customers.

Because the group valued the insights that could be achieved by comparing the company‟s

processes against best practice, a process-driven component was also included in the assessment

plan.

Step 2: Execute inquiry cycles
The resulting assessment plan contained three perception-driven inquiry cycles and one process-

driven inquiry cycle. Key insights from each of these inquiry cycles are summarized in the

following sections.

Inquiry Cycle 1: Software Development Perceptions
The software development group at TelSoft is responsible for interacting with clients to generate

a software requirements specification, creating the GIS software based upon these software

requirements, evaluating the impact of requirements changes, and ensuring the quality of the

resulting software product. We interviewed nine representatives from the software development

group: 2 project managers, 2 software engineers, 1 quality assurance analyst, 2 business analysts,

and 2 mid-level managers. The interviews typically lasted one hour and were attended by at least

two of the authors. The first author participated in all of the interviews, generated field notes, and

maintained the case study database. An interview guide was created that asked about both

objective and subjective data on requirements-related documentation and activities (see Table

14).

Table 14: Interview Guide

Because this assessment was conducted as part of an improvement project, our analysis focused

on the weaknesses identified. Participant‟s perceptions were analyzed for similar themes and

documented into a list of 17 potential problem areas. Later, all members of the software

development group participated in a three-hour workshop to evaluate this list. For each problem

area, participants individually provided an assessment of criticality, feasibility, and priority.

These individual responses were then debated and again prioritized in break-out sessions during

the workshop. A plenary session was then held in which all groups described their top issues.

Requirements Documents Requirements Activities

 Which?

 Inputs to you?

 Contributions?

 Output to whom?

 Which?

 Interactions?

 Collaboration?

 Resources?

 Strengths

 Weaknesses

 Opportunities

 Strengths

 Weaknesses

 Opportunities

www.manaraa.com

Paper 1: Combining Perceptions and Processes 71

Table 15 shows the RE-related problems that the software development group gave highest

priority.

Table 15: Software Development Problem Areas

Problem Area Description

Quality

Assurance

Disintegration

Quality assurance department needs to be kept informed

as detailed requirements evolve.

Change

Management

Requirements changes are not addressed in a systematic

fashion; documents are not kept updated and consistent.

Ad-hoc Review Review of requirements is often performed in an ad-hoc

fashion where reviewers are unprepared and critique is

not systematically fed back into the requirements

process.

Resource

allocation

Quality assurance and core development have difficulties

in prioritizing tasks and requests across projects.

Customer

variation

There are considerable variations in requirements

management and quality assurance practices across

customers

Process vs.

Practice

TelSoft’s documented requirements management process

is considerable different from actual practice; the

ongoing maintenance and innovation of the described

processes is not institutionalized.

Documentation

Standards

Documentation standards vary; there are considerable

variations in style and level of detail across authors; the

most appropriate documentation form is not necessarily

chosen to effectively target documentation users; some

documentation standards do not fit current needs.

Outdated tools Tools and methodologies for requirements management

are not state-of-the-art; there are no procedures or

responsibilities in place to facilitate improvements.

Inquiry Cycle 2: Internal Customer Perceptions
In the second perception-driven cycle, we focused on the internal groups that interacted with the

software development group in generating and managing software requirements. The software

development group receives requirements from both the marketing organization and an internal

production group that uses its GIS software. We interviewed 2 sales people, 3 project managers

for the internal production group, and a mid-level manager. Once the interviews were completed,

the authors again analyzed the interview data for common themes that suggested potential

problem areas. We held a workshop for validating and prioritizing the 14 identified problem

areas that involved the people interviewed as well as other users within the internal production

group. Table 16 lists the RE-related problems given highest priority by internal customers.

www.manaraa.com

Paper 1: Combining Perceptions and Processes 72

Table 16: Internal Customer Problem Areas

Problem Area Description

Unsystematic

early capture of

requirements

TelSoft’s Sales and Marketing representatives

often capture client requirements in

unsystematic, non-documented ways as basis

for later interaction with other TelSoft

stakeholders.

Changes not

systematically

communicated

to internal users

Procedural and software changes are not

systematically communicated to internal users

Varying

contribution of

requirements

documentation

There are different opinions about the role and

value of some requirements documentation.

The intention is to create this document during

the bid process to price the project. However,

most clients spend little time specifying

requirements upfront, and they tend to

primarily present good, standard cases of data.

That leads to inaccurate pricing.

Complex chain

of requirements

communication

There are several TelSoft stakeholders (e.g.,

Sales, Project management, business analysts,

and software developers) involved in the

requirements process. That leads to many

interpretations and necessary translations,

each introducing new sources of error.

Inquiry Cycle 3: REGPG Assessment
Through these first two inquiry cycles, we learned of key concerns related to requirements

practices from the perspective of TelSoft employees. However, we also wanted to evaluate

TelSoft‟s practices against best practices to uncover additional vulnerabilities. The REGPG

assessment (Sommerville et al., 1997) was chosen because prior empirical research showed it to

be useful for RE process improvement (e.g., Kauppinen et al., 2002). Additionally, the authors

had access to a REGPG assessment tool (Sommerville et al., 2005) that simplified data

collection, provided process guidance, ensured accurate calculation of requirements maturity,

and automated report generation.

The assessment was conducted during a two hour meeting with members of the PST. Participants

were provided a written report containing a description of each of the 66 practices and expected

benefits to including the practice. Early on, the group eliminated practices associated with the

critical systems area as unnecessary for TelSoft‟s business. Each relevant practice was read aloud

and categorized as being standardized, normalized, discretionary, or never followed. During

discussion, the group created an additional category called “standardized but not checked” to

indicate that TelSoft‟s documented processes met the spirit of the practice but there was no

mechanism in place to ensure compliance. For the purposes of calculating RE maturity, this was

coded as standardized in the REGPG assessment tool. For questions the group did not feel

www.manaraa.com

Paper 1: Combining Perceptions and Processes 73

prepared to answer, they solicited response from appropriate people after the meeting. After all

of the practices had been evaluated, we assessed the usefulness of this assessment – what we

learned, what possible actions could be taken, and how this compared to what we had discovered

from the two workshops conducted. The REGPG assessment identified TelSoft‟s strengths as

being in the areas of documenting, eliciting, and describing requirements. Areas for

improvement were in analyzing, validating, and managing requirements. The company‟s overall

RE maturity level was assessed at the lowest level: initial.

Table 17: Guideline Usage and Maturity Level

Inquiry Cycle 4: External Customer Perceptions
In the final inquiry cycle, we interviewed external customers who interacted with TelSoft to

generate software requirements, request requirements changes, and perform user acceptance

testing. The PST selected seven client representatives from three of TelSoft‟s long-time

customers. A new interview guide was created that asked about requirements documentation,

requirements management, and process innovation. In this cycle, there was no workshop used as

a discussion forum. The customers praised the TelSoft personnel for understanding their

business, responding promptly to customer requests, and adapting internal practices to client‟s

needs; however, they identified areas for improvement as follows:

 TelSoft needs to increase the transparency and consistency of its configuration

management, documentation, and test activities.

 TelSoft needs to improve its packaging procedures and related release notes.

 TelSoft needs to increase the frequency and consistency of their communication with the

client.

 TelSoft should be better at making early estimates to help scope projects.

Step 3: Make Recommendations
An initial report was created by the PST and presented to the Steering Committee for approval.

The problem areas from the combined RE assessment were categorized into seven improvement

areas: software vision management, project portfolio management, software configuration

management, customer relations management, requirements management, software quality

assurance, and end-user interaction. The combined RE assessment revealed that TelSoft needed

to develop its ability to sense customer needs, technological and market opportunities. They

needed to be more proactive in their interactions with customers: sharing information about their

 Basic Intermediate Advanced

Guidelines Used 19 9 0

Weighted Score 37 14 0

Maximum

Possible
105 66 27

Score % of

Maximum
35 21 0

Level Initial

www.manaraa.com

Paper 1: Combining Perceptions and Processes 74

software development procedures to increase client confidence in the software product. Based

upon this assessment, we recommended that TelSoft abandon a command-and-control approach

and use governing principles and defined roles to become a more adaptive enterprise (Haeckel,

1995).

The improvement strategy would be addressed through a number of focused and dedicated

project teams with clear success criteria and specified deliverables. The proposed project teams

were to address software requirements management, software configuration management,

software quality management, customer relations management, and software coordination issues.

These project teams would be established, monitored, and coordinated through the PST. Once

the Steering Committee approved the proposed project teams, a kick-off seminar would present

the RE assessment results to all employees in the software development group to validate

findings and create additional input from the employees on suitable improvement activities.

Discussion
This research contributes to our knowledge on how firms can assess RE practices to improve

performance and better respond to customer and market dynamics. In the following sections, we

discuss this contribution by relating the findings from TelSoft to the two research questions.

RQ1: Insights from Process- vs. Perception-driven
By comparing insights from the process-driven versus perception-driven inquiry cycles, we

identified findings that were complementary, contradictory, or unique.

First, data from one inquiry type could support initial findings from the other. For example, the

process-driven REGPG identified that TelSoft used only 2 of the 9 suggested practices in the

requirements management area which could lead to development rework and systems that do not

meet customer‟s expectations (Sommerville et al., 1997). The perception-driven assessment also

identified weaknesses in managing requirements changes (Cycle 1, Change Management) and in

ensuring that all stakeholders understand the current requirements and the relationship between

them (Cycle 2, Complex chain of requirements communication). One of the REGPG guidelines

advocates using a database to manage requirements, yet TelSoft suffered from unsophisticated

requirements management tools (Cycle 1, Outdated tools).

Second, combining the two inquiry types could lead to contradictory results. TelSoft earned high

marks with the process-driven REGPG for having defined a standard document structure with an

optional glossary for specialized terms and a table of contents to help readers find information;

the company also routinely held requirements review sessions. However, the perception-driven

assessment indicated problems related to requirements documentation. For example, even though

the format was standardized, it did not meet the needs of all stakeholders in the software

development group (Cycle 1, Documentation Standards). Also, during the early requirements

elicitation phases, sales and marketing representatives did not systematically document client

requirements in sufficient detail for other stakeholders (Cycle 2, Unsystematic early capture of

requirements).

Finally, one form of inquiry could provide insight into an area that the other did not even

address. For example, the perception-driven inquiry highlighted problems in communicating

requirements changes to stakeholders both internal and external to TelSoft (Cycle 1, Quality

www.manaraa.com

Paper 1: Combining Perceptions and Processes 75

Assurance Disintegration; Cycle 2, Changes not systematically communicated to internal users;

Cycle 3, Increase communication with client). The perception-driven inquiry also revealed a lack

of reflection and innovation of RE processes (Cycle 1, Process vs. Practice; Cycle 1, Customer

variation) at TelSoft that was not captured during the REGPG assessment.

These examples illustrate the benefit of combining these two sources of knowledge to obtain a

more comprehensive view of RE practices.

RQ2: Combined RE Assessment Approach
We have described a combined approach to RE assessment and illustrated its use in a case study

at TelSoft, thereby addressing the second research question. The approach builds on existing

process-driven assessments (Sommerville et al., 2005; Sommerville et al., 1997) and on

approaches to organizational problem solving that is driven by stakeholder perception and

involvement (Checkland et al., 1999). The resulting combined approach is illustrated in Figure 1.

In conclusion, this research illustrates how requirements assessment can benefit from the

perceptions and active participation of key stakeholders as well as a process-driven approach

such as REGPG. We advocate future research to explore how results from such a combined

assessment can be used to improve RE practices within organizations.

References
1. Basili, V., and Rombach, H. (1988) The tame project: towards improvement-oriented software

environments, IEEE Transactions on Software Engineering, 14, 6, 758-773.

2. Baskerville, R. (1998) Diversity in information systems action research methods, European

Journal of Information Systems, 7, 2, 90.

3. Beecham, S., Hall, T., Britton, C., Cottee, M., and Rainer, A. (2005a) Using an expert panel to

validate a requirement process improvement model, The Journal of Systems and Software,

76, 3, 251.

4. Beecham, S., Hall, T., and Rainer, A. (2005b) Defining a Requirements Process Improvement

Model, Software Quality Journal, 13, 3, 247-279.

5. Checkland, P., and Scholes, J. (1999) Soft systems methodology: a 30-year retrospective John

Wiley, Chichester.

6. CMMI Product Team (2002) CMMI for Systems Engineering/Software

Engineering/Integrated Product and Process Development/Supplier Sourcing, CMU/SEI-

2002-TR-011, Software Engineering Institute.

7. Curtis, B., and Paulk, M. (1993) Creating a software process improvement program,

Information and Software Technology, 35, 6,7, 381.

8. Damian, D., Zowghi, D., Vaidyanathasamy, L., and Pal, Y. (2004) An industrial case study of

immediate benefits of requirements engineering process improvement at the Australian

Center for Unisys Software, Empirical Software Engineering, 9, 1-2, 45-75.

9. Daneva, M. (2002) Using maturity assessments to understand the ERP requirements

engineering process, Requirements Engineering, 2002. Proceedings. IEEE Joint

International Conference on, 255-262.

10. Daneva, M. (2003) Lessons learnt from five years of experience in ERP requirements

engineering, Requirements Engineering Conference, 2003. Proceedings. 11th IEEE

International, 45-54.

www.manaraa.com

Paper 1: Combining Perceptions and Processes 76

11. El Emam, K., and Birk, A. (2000) Validating the ISO/IEC 15504 measure of software

requirements analysis process capability, IEEE Transactions on Software Engineering, 26,

6, 541.

12. El Emam, K., and Madhavji, N.H. (1995) Measuring the success of requirements engineering

processes, IEEE International Symposium on Requirements Engineering, 204-211.

13. Frederiksen, H.D., and Mathiassen, L. (2005) Information-Centric Assessment of Software

Metrics Practices, IEEE Transactions on Engineering Management, 52, 3, 350-362.

14. Haeckel, S. (1995) Adaptive enterprise design: the sense-and-respond model, Planning

Review, 23, 3, 6-13, 42.

15. Humphrey, W.S. (1989) Managing the Software Process Addison-Wesley, Boston, MA.

16. Kauppinen, M., Aaltio, T., and Kujala, S. (2002) Lessons Learned from applying the

requirements engineering good practice guide for process improvement, 7th International

Conference on Software Quality (ECSQ), Helsinki, Finland.

17. Kauppinen, M., Vartiainen, M., Kontio, J., Kujala, S., and Sulonen, R. (2004) Implementing

requirements engineering processes throughout organizations: success factors and

challenges, Information and Software Technology, 46, 14, 937.

18. Kock, N., and Lau, F. (2001) Information system action research: serving two demanding

masters, Information Technology & People, 14, 1, 6-11.

19. Kotonya, G., and Sommerville, I. (1998) Requirements engineering processes and techniques

John Wiley & Sons.

20. Lyytinen, K. (1988) Stakeholders, IS failures and soft system methodology: an assessment,

Journal of Applied Systems Analysis, 15, 61-81.

21. Mathiassen, L. (2002) Collaborative practice research, Information Technology & People,

15, 4, 321-345.

22. McFeeley, B. (1996) IDEAL: A user's guide for software process improvement, CMU/SEI-

96-HB-001, Software Engineering Institute.

23. McKay, J., and Marshall, P. (2001) The dual imperatives of action research, Information

Technology & People, 14, 1, 46-59.

24. Mingers, J. (2001) Combining IS Research Methods: Towards a Pluralist Methodology,

Information Systems Research, 12, 3, 240.

25. Mingers, J., and Gill, A. (1997) Multimethodology: The theory and practice of combining

management science methodologies John Wiley & Sons, Chichester.

26. Niazi, M. (2005) An instrument for measuring the maturity of requirements engineering

process, 6th International Conference on Product Focused Software Process Improvement,

Oulu, Finland.

27. Nielsen, P.A., and Pries-Heje, J. (2002) A Framework for selecting an assessment strategy, in

L. Mathiassen, J. Pries-Heje and O. Ngwenyama (Eds.), Improving software organizations:

from principles to practice, Addison-Wesley.

28. Orlikowski, W., and Baroudi, J.J. (1991) Studying information technology in organizations:

research approaches and assumptions, Information Systems Research, 2, 1, 1-28.

29. Pouloudi, A., and Whitley, E. (1997) Stakeholder identification in inter-organizational

systems: gaining insights for drug use management systems, European Journal of

Information Systems, 6, 1, 1.

30. Rapoport, R. (1970) Three Dilemmas in Action Research, Human Relations, 23, 6, 499-513.

31. Schmidt, R., Lyytinen, K., Keil, M., and Cule, P. (2001) Identifying Software Project Risks:

An International Delphi Study, Journal of Management Information Systems, 17, 4, 5-36.

www.manaraa.com

Paper 1: Combining Perceptions and Processes 77

32. Simon, J.-M. (1996) SPICE: Overview for software process improvement, Journal of

Systems Architecture, 42, 8, 633.

33. Sommerville, I., and Ransom, J. (2005) An empirical study of industrial requirements

engineering process assessment and improvement, ACM Transactions on Software

Engineering and Methodology, 14, 1, 85-117.

34. Sommerville, I., and Sawyer, P. (1997) Requirements Engineering: A Good Practice Guide

John Wiley & Sons, New York, NY.

35. Susman, G., and Evered, R. (1978) An assessment of the scientific merits of action research,

Administrative Science Quarterly, 23, 4, 582-603.

36. Vidgen, R. (1997) Stakeholders, soft systems and technology: separation and mediation in

the analysis of information system requirements, Information Systems Journal, 7, 1, 21-46.

37. Yin, R.K. (2003) Case Study Research: Design and Methods, (3rd ed.) Sage, Thousand Oaks.

www.manaraa.com

 78

Paper 2: Negotiating Repeat-ability and Response-ability

Title: Negotiating Repeat-ability and Response-ability in

Requirements Engineering

This paper is coauthored by Nannette Napier, Lars Mathiassen, and

Roy D. Johnson

This version of the paper was accepted and presented at the

International Conference on Information Systems (ICIS),

Award Best Paper in Track

Milwaukee, Wisconsin, 2006

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 79

Abstract
Requirements engineering (RE) practices are critical to success during development of business

software. As managers assess RE practices, they apply specific perspectives that determine

problems identified and recommendations for improvement. Two perspectives have recently

dominated managerial thinking within the software industry, one rooted in software process

improvement and the other rooted in agile software development. Underpinning these

perspectives are two theories about what constitutes good software practice. In this paper, we

explicate these theories in relation to RE and show how they differ in basic assumptions about

the nature of requirements, requirements capture, requirements usage, change management, and

approach to improvement. The repeat-ability theory holds that good requirements practices are

plan-driven and follow generic best practices to arrive at an agreed-upon baseline of software

requirements. Response-ability holds that good requirements practices are adaptive and involve

close interaction between customers and developers to arrive at satisfactory software solutions.

We use case study data from a software firm, TelSoft, to show how the theories lead to different

interpretations about why current practices are problematic and how problems are resolved.

Relating to the improvement strategy adopted at TelSoft, we demonstrate the superiority, for

managers, of negotiating response-ability and repeat-ability concerns when improving RE

practices. The paper concludes with a discussion of implications for research and practice.

Keywords
Requirements management, agile methods, software process improvement, CMM, case study

Introduction
Requirements Engineering (RE) involves eliciting, documenting, and maintaining software

requirements throughout the software development lifecycle (Kotonya and Sommerville, 1998).

Ineffective RE practices can have long-term consequences for software projects. For example,

discovering requirements errors during the production phase is estimated to be 100 times more

expensive to fix than if that same error is found during the analysis phase (Boehm, 1983).

Acknowledging the significance of RE, software project managers have identified misunderstood

requirements as the second most important risk to be managed (Schmidt, Lyytinen, Keil and

Cule, 2001). Despite RE-specific process descriptions and best practices (Beecham, Hall and

Rainer, 2005b; CMMI Product Team, 2002; Sommerville and Sawyer, 1997), RE remains one of

the most challenging aspects of business software development (Beecham, Hall, Britton, Cottee

and Rainer, 2005a). This is due in part to competitive business environments characterized by

frequent requirements changes, rapid technological advances, and time-to-market pressures

(Ramesh, Pries-Heje and Baskerville, 2002).

Software development managers looking to improve RE practices must first be able to identify

problems with current RE practices and then determine the most appropriate tactics for resolving

those problems. The perspective applied to the situation determines the problems identified and

the resulting recommendations for improvement. Two perspectives which have strongly

influenced software development are plan-driven versus agile development approaches (Boehm,

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 80

2002). Plan-driven approaches stress repeat-ability whereas agile approaches emphasize

response-ability.

Plan-driven approaches, such as the Software Capability Maturity Model (SW-CMM), Bootstrap

(Kuvaja and Bicego, 1994), or SPICE (Rout, 1995), emphasize documentation of project

milestones, requirements, and designs; this approach is appropriate when the requirements are

stable and known in advance (Boehm, 2002). The plan-driven approach assumes that

improvement occurs by increasing organizational maturity through documented and repeatable

processes (Humphrey, 1989). While some companies have benefited from implementing SW-

CMM, there are also limitations with this approach to software process improvement: the scope

of the assessment is limited by the model; it can be expensive to put into practice; and best

practices may not fit closely the wants and needs of the organization (Iversen, Nielsen and

Norbjerg, 2002). In the context of RE, one study found that SW-CMM-based approaches were

able to improve technical RE problems, but not necessarily organizational RE problems

(Beecham et al., 2005b).

Agile approaches, such as extreme programming (Beck, 1999), Crystal Methods (Cockburn,

2000), or Adaptive Software Development (Highsmith, 2000), emphasize people and prototypes

over processes and documentation (Agile Alliance, 2001; Highsmith and Cockburn, 2001). Agile

RE practices are less formal than plan-driven RE practices, but they still focus on understanding

the customer‟s business requirements (Orr, 2004). Because requirements are expected to change,

agile development occurs in short, iterative development cycles, and there is little attempt to

predict future requirements. Agile methods also prescribe close collaboration between customers

and the development organization to continually refine and prioritize requirements.

Although there are strong advocates of both the plan-driven and agile approaches, there have

also been recent attempts to explore combining the two approaches. Boehm (2002) suggests that

project characteristics such as developer skill set, customer availability, and requirements

predictability be evaluated and used to pick the approach that best fits the situation. Furthermore,

he suggests combining plan-driven and agile approaches for projects that have mixed

characteristics. Some studies have examined how agile approaches can comply with the

guidelines of the SW-CMM (Paulk, 2001) and its latest version the Capability Maturity Model

Integration (CMMI) (Anderson, 2005; CMMI Product Team, 2002). Empirical case studies have

also begun to appear that show how this combination can occur (Baker, 2005; Salo and

Abrahamsson, 2005). However, the mixed messages about what approach to adopt can be a

source of confusion for software managers. There is therefore a need to explicate the theoretical

underpinning of the two approaches and to understand how they apply to RE practices.

Hence, we explore the repeat-ability and response-ability theories that underpin plan-driven and

agile approaches, and we apply them to RE practices in a software firm, TelSoft (a pseudonym).

We emphasize the two theories for RE from the viewpoint of their implications for action. The

objective is to clarify the underlying assumptions of plan-driven and agile approaches in relation

to RE and to explore what types of problems and recommendations each perspective reveals. To

achieve this, we conducted a systematic assessment of RE practices in TelSoft and used the data

to address the following research questions:

1. What assumptions distinguish repeat-ability from response-ability theories of RE?

2. How do repeat-ability and response-ability theories differ in assessing RE practice?

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 81

3. How do repeat-ability and response-ability theories apply to improving RE practice?

The argument is organized as follows: First, the repeat-ability and response-ability theories on

RE are presented and contrasted in terms of their underlying assumptions. Next, background

information is provided about TelSoft and the adopted research approach. Then, we evaluate the

theories based on data from TelSoft. The paper concludes with recommendations for software

managers and future research.

RE Theories
A manager trying to decide how to improve RE practices may hold one of two divergent theories

about why current practices are problematic and how problems are resolved: repeat-ability and

response-ability. Repeat-ability holds that good requirements practices are plan-driven and

follow a set of generic best practices for how to arrive at an agreed-upon baseline of software

requirements. Repeat-ability is an important principle within the SW-CMM (Paulk, Curtis,

Chrissis and Weber, 1993). In fact, the first step in increasing organizational maturity involves

moving from an initial level to a repeatable level by reducing variations in practices (Humphrey,

1989). In contrast, response-ability holds that good requirements practices are adaptive and

involve close collaboration and interaction between customers and developers to help develop

satisfactory software solutions. Response-ability is an important principle within agile

development approaches (Beck, 1999; Boehm and Turner, 2004; Turk, France and Rumpe,

2005). In fact, one of the four basic principles of the Agile Manifesto is “Responding to change

over following a plan” (Agile Alliance, 2001). Table 1 describes these two idealized perspectives

in detail and explicates their underlying assumptions in the context of requirements engineering.

Table 1: Theories of RE – Underlying Assumptions

Assumption Repeat-ability Response-ability

1. Nature of

requirements

 Requirements represent

software capabilities

 Requirements are explicated as

texts in documents

 Requirements are perceptions of

software capabilities

 Requirements are tacitly

embedded in social relationships

2. Requirements

capture

 Requirements are derived

through specification

 Interaction is formal

 Requirements are discovered

through negotiation

 Interaction is informal

3. Requirements

usage

 Requirements are baselined

and predate development

 Requirements are stored with

traceability to source code

 Requirements emerge through

development

 Requirements are expressed

through software solutions

4. Change

management

 Requirements changes are

exceptions and must be

managed

 Requirements changes are

expected and must be embraced

5. Improvement

approach

 The goal is to reduce process

variance through best practices

 The goal is to increase customer

satisfaction through

collaboration

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 82

In the repeat-ability theory, requirements are textual representations of the desired software

capabilities. Requirements knowledge is explicated as objects that are passed between

requirements providers and requirements receivers. Requirements capture is a formal process

that occurs before development work begins; it includes document review, discussion, and sign-

off to indicate approval. Once sign-off has been obtained, a requirements baseline is established.

Any changes to the requirements baseline must be documented and communicated to relevant

stakeholders (Paulk et al., 1993). The role of quality assurance is to verify that the completed

software matches the requirements specification. If RE practices are problematic, this approach

looks for missing or inefficient processes. The overall improvement approach in the repeat-

ability paradigm is to institute best practices and reduce process variance (Humphrey, 1989).

In the response-ability theory, requirements exist as shared understandings between stakeholders.

Requirements knowledge is tacit, and the role of documentation is minimized. Customers play a

critical role during software development as expressed in the principle “Customer collaboration

over contract negotiation” (Agile Alliance, 2001). Customers provide immediate feedback on

interim versions of the software and set priorities for the next iteration. Requirements capture

happens informally as part of ongoing conversations with customers. This incremental approach

allows requirements changes to be incorporated into the next version of the software. If RE

practices are problematic, this approach looks for breakdowns in communication with customers

or between developers. The overall improvement approach is to increase customer satisfaction

by enhancing collaboration to quickly adapt to customer requests.

Research Methodology
A partnership between TelSoft and three researchers from a University Innovation Center (UIC)

provided the basis for data collection. Overall, we adopted an action research approach

(Baskerville, 1998; Rapoport, 1970; Susman and Evered, 1978) to diagnose RE practices,

provide specific recommendations, and implement improvements. In this section, we provide

background information about the research site and describe the research approach of this study

in detail.

TelSoft
TelSoft was founded in 1971 with the mission to be the premier technical services firm in the

telecommunications and utility industries. Approximately 50 people within TelSoft‟s software

development division work together to build and customize geographic information systems

(GIS) software. TelSoft’s biggest strength is its people: experienced software engineers with deep

knowledge of the GIS application, systems analysts with strong customer relationships, and

managers willing to adapt quickly to customer requests. However, the company acknowledges

recent issues with its RE practices. For example, internal stakeholders complain that insufficient

information is collected during requirements elicitation, thereby delaying design and

development activities. Increasingly, customers identify missing functionality during acceptance

testing of the delivered software. Also, financial pressures require TelSoft to downsize its

workforce, causing it to lose valuable customer and application expertise.

TelSoft‟s prior attempt at improvement was initiated in July 2000 guided by SW-CMM (Paulk et

al., 1993). Despite high productivity rates and perceptions of progress, support for the SW-CMM

initiative was withdrawn in August 2001 due primarily to financial pressures. TelSoft decided to

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 83

commit resource to imminent development rather than to process improvement. The most visible

remains of the improvement effort were unused and out-dated process documentation combined

with mistrust for rigorously following SW-CMM to improve RE practices.

Industry-Research Collaboration
To address this problematic situation, a collaborative practice research (Mathiassen, 2002)

project was initiated between TelSoft and the authors in October 2004. Collaborative practice

research is a form of action research characterized by strong collaboration between practitioners

and researcher. Galliers (1991) defines action research as an attempt to obtain practical results

valued by the involved groups while adding to the body of knowledge in the discipline.

Consistent with the dual problem solving cycle and research cycle (McKay and Marshall, 2001),

the collaboration had two objectives: 1) improving the quality and productivity of software

services at TelSoft through enhanced RE practices and 2) contributing to research in software

requirements management. A memorandum of understanding detailing the project plan, initial

tasks, and collaboration structure documented the agreement between TelSoft and UIC. The

collaboration was designed to address the following tasks:

1. Model and assess TelSoft’s existing practices and tools as they are applied to

requirements elicitation, analysis, documentation, and management.

2. Describe key sources of requirements, the interests of the involved stakeholders, and the

different ways in which new requirements are negotiated and used as the basis to define

the scope of development projects.

3. Describe existing practices and tools used to continuously manage the scope of projects

by tracing project activities and product functionality to the requirements of the project.

4. Identify strengths and weaknesses in current RE practices as well as opportunities for

improvement. Generate new or changed process documentation to assist TelSoft future

requirements management efforts.

5. Implement and assess selected improvements in RE practices.

The IDEAL model was adopted from McFeeley (1996) to improve RE practices. This particular

research article focus on information gathered during the “D” phase or “Diagnosing” (see Figure

1).

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 84

Figure 1: IDEAL Model (McFeeley, 1996)

Stimulus for
improvement

Set context &
Establish

sponsorship

Establish

infra-
structure

Appraise &
Characterize

current process

Develop recommendations

& Document results

Set strategy &
Priorities

Establish

process action
teams & Action

plans

Define processes & measures

Plan & Execute pilots
Plan. Execute, & Track installation

Document &

Analyze lessons

Revise

organizational
approach

INITIATING

DIAGNO-
SING

ESTABLISH-
MENT

ACTING
LEARNING

The collaboration was managed by a Steering Committee (SC) composed of senior management

from TelSoft and the three university researchers (see Figure 2). The SC meets 2-3 times per year

as needed to oversee the project. More hands-on activities are completed by the Problem-Solving

Team (PST) consisting of middle-level managers at TelSoft and the three researchers. The PST

meets as needed to guide the collaboration and make decisions such as selecting participants for

interviews and workshops.

Figure 2: Managing Collaborative Practice Research (Mathiassen 2002)

Data Collection
Data collection and documentation are essential for successful action research and qualitative

research in general (Avison, Lau, Myers and Nielsen, 1999; Mason, 2002; Miles and Huberman,

1994). Because one of the authors had previously worked at TelSoft, the research team quickly

earned acceptance by and confidence of the TelSoft employees. In December 2004, the research

team initiated a diagnosis of RE practices by examining TelSoft’s existing documentation of

software development processes, procedures, and policies. This was followed by semi-structured

interviews with 22 representatives from three major stakeholder groups: software development,

TelSoft: VP of Software Development,

 3 Managers

UIC: Three authors

TelSoft: CEO, VP of Software

Development,

 Division President

UIC: Three authors

Steering Committee

(SC)

Problem Solving Team

(PST)

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 85

internal customers, and external customers (see Table 2: Summary of Interview Sources). In

most cases, the interviews were recorded and conducted face-to-face with at least two

researchers present; however, there were some interviews that were conducted via conference

calls or with just the first author present. In all cases, the interviewers took extensive notes

during the interview which were later reviewed, discussed, and analyzed. An interview guide

was presented to participants to structure the interview process and ensure that we collected the

desired information about RE practices. These interview guides were tailored to suit stakeholders

internal and external to TelSoft (see Table 3: Interview Guide for Internal Stakeholders).

Interviews were scheduled for one hour. While the interviews served as a primary data source,

we used multiple sources of evidence to corroborate our findings (Mason, 2002; Miles et al.,

1994). These sources included: field observation, field notes, minutes from PST meetings, the

diagnostic report of RE practices at TelSoft, and unlimited access to all TelSoft‟s process

documentation.

Table 2: Summary of Interview Sources

Group Affiliation Count Role

Internal Customers

(Map Services, Sales)

6 1 Liaison to Software

Group

3 Project Managers

2 Sales Representatives

Software

Development Group

9 2 Development Managers

2 Project Managers

2 Software Engineers

2 Systems Analysts

1 Quality Assurance

Analyst

External Customers

(Far Telco, Local

Telco, other)

7 3 Managers, Far Telco

3 Managers, Local Telco

1 Engineer, other

customer

Table 3: Interview Guide for Internal Stakeholders

Requirements Documents Requirements Activities

 Which?

 Inputs from whom?

 Contributions?

 Output to whom?

 Which?

 Interactions?

 Collaboration?

 Resources?

 Strengths

 Weaknesses

 Opportunities

 Strengths

 Weaknesses

 Opportunities

Data Analysis

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 86

As suggested by Miles and Huberman (1994, p. 56), data analysis was an ongoing process. After

groups of interviews were conducted, the research team met to reflect upon what was learned and

detect patterns emerging from the data. These ideas were discussed with the PST for feedback

and verification and documented in field notes. Additionally, we created interim reports after

completing interviews with each of the three stakeholder groups. We also conducted workshops

with participants from the software development and internal customers groups to present the

problems detected and to validate our assessment. In these 2-3 hour workshops, participants

prioritized the identified problems in terms of criticality, feasibility, and priority. Feedback from

these workshops and all interviews were accumulated into the comprehensive diagnostic report

which was approved by both the PST and SC.

To answer our research questions, an additional level of analysis was conducted. We used an

alternative templates strategy for analyzing the data (Langley, 1999); in this approach, different

theories are independently applied to the same data to evaluate the explanatory power of the

theories. This technique was previously used by Markus (1983) to compare three theories of

resistance when studying systems implementation. Similarly, at TelSoft, we approached a

complex managerial issue through alternative theoretical lenses of repeat-ability and response-

ability. We applied each theory to the case data and assessed the useful of the theories for

managerial practice.

The analytical process was guided by the fundamental principle of the hermeneutic circle (Klein

and Myers, 1999); we alternated between focusing on each theory as a whole and on examining

closely the underlying assumptions composing each theory as outlined in Table 1: Theories of

RE – Underlying Assumptions. During the holistic analysis, the three researchers first adopted

the repeat-ability lens. After reviewing selected data sources and reflecting upon their

experiences at TelSoft, they identified key problems and recommendations that would occur

within the repeat-ability paradigm. Once agreement had been reached, the three researchers then

repeated their interpretation of the key problems and recommendations based upon the response-

ability lens. This activity resulted in a rough, first version of what is presented in Table 4.

During the detailed analysis, evidence for each theoretical assumption was systematically

gathered from the data. Several codes were developed for each of the five assumptions of repeat-

ability and response-ability. For example, within the repeat-ability theory, two codes were

created relating to the nature of requirements: (1) indicating that requirements are another

representation of the software and (2) indicating requirements should be documented in textual

format. Using Atlas.ti qualitative software, the first author then read through the entire set of data

sources and applied the repeat-ability codes to all mentioning of problems related to

requirements, their capture, their usage, change management, and approaches to improvement.

The process was then done again using the codes from the response-ability theory.

Finally, all three researchers reconsidered the result of the holistic analysis in the light of the

systematic coding of the data. This led to changes in and refinements of Table 4 and also to

revision and improvement of the coding. These analysis activities were iterated until all three

authors agreed that each of the two theories had contributed with a coherent and satisfactory

explanation of the data from TelSoft (Langley, 1999).

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 87

Requirements Practices
TelSoft has two primary software products: Map Displayer and Engineering Support Tool

(pseudonyms). The Map Displayer is relatively low-cost software that displays digitized maps,

has global positioning capabilities, and supports limited drawing capabilities. Companies use

Map Displayer to save on plotting and printing costs and to allow field workers access to up-to-

date, accurate maps.

The Engineering Support Tool serves as an accounting system for utilities (e.g., location of

poles, right of ways, cables, etc.). There is a great deal of configuration involved in setting up

this particular software; therefore, it is expensive to license and to use. TelSoft has, as a

consequence, only a handful of clients that use the Engineering Support Tool, and this client base

is dominated by two long-standing, large customers whose requests largely dictate the product‟s

innovation and growth.

There are two major groups within TelSoft: Software Development and the Map Services group.

Software Development includes systems analysts, project managers, software engineers, quality

assurance analysts, and their managers. Their job is to create new functionality requested by

clients and maintain the existing software products. Map Services uses the Engineering Support

Tool software to convert paper maps into digital format and to translate electronic maps from

one format to another. Both of these groups communicate with TelSoft‟s Sales group to learn

about end user needs for either updated versions of the software or new formats for digitized

maps.

In this next section, we describe RE practices at TelSoft. The data suggest that TelSoft practices

vary greatly based upon the customer being served; therefore, this section is divided by customer

type. First, we describe how Software Development and Map Services interact to generate

requirements. Then, we describe the RE practices with two of TelSoft‟s most established external

customers. For each of these customers, we describe how requirements are captured,

documented, stored, and changed.

Requirements Initiated by Internal Customers
The Map Services group is the primary internal customer of Software Development. Because this

group is seen as part of the TelSoft family, the typical rules that apply to external customers

regarding documenting and negotiating requirements are relaxed.

Requirements come from a variety of sources: end users looking for an easier way to do their

jobs, Map Service‟s clients changing how digitizing should occur, or unanticipated data

conditions found that the software now needs to handle. Requests for new software functionality

are typically shared with Software Development via email messages or informal face-to-face

conversations. Later, the resulting requirements are documented in bulleted format and logged in

the defect tracking database. Because Map Services relies upon the software as a production tool,

the chief concern of production managers is getting software that meets their requirements as

quickly as possible with minimal documentation.

The relationship between the groups is strained in part because requirements are not fully

understood and agreed upon before development work begins. Software Development gets

frustrated and feels that Map Services does not do a good job of explicating their requirements

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 88

up front. Instead, they communicate what they think they want at a very high level and then,

when software development implements it, they want something different. This leads to re-work

and blown schedules.

From Map Services‟ perspective, Software Development does not deliver a quality product to

them in a timely fashion which halts their ability to digitize maps and dramatically affects their

bottom-line. Software Development prioritizes requests from external customers over the ones

from internal customers. Not trusting that the stringent quality assurance guidelines were being

followed, the Map Services manager dedicated a person on his staff just to test the quality of the

work being done by Software Development. Because Software Development does not incur any

costs for giving poor service or product to Map Services, there is little incentive for them to

prioritize Map Services‟ needs over the needs of external customers.

Both Software Development and Map Services realize that there are missed opportunities for

productivity and quality enhancement because the internal end users are not always aware of the

capabilities of the Engineering Support Tool and Software Development is not knowledgeable

about how the software is being used. This occurs even though there are a large number of end

users from Map Services collocated with Software Development.

Requirements Initiated by External Customers
Software Development focuses primarily on two external customers that hold the largest number

of licenses for its Map Displayer product and that have invested in enhancing the Engineering

Support Tool. These companies drive changes to the software by specifying which functional

and non-functional requirements they are willing to pay for and what the user-interface should

look like. In an effort to keep these customers happy, TelSoft frequently responds with a “yes”

when asked to make changes to their processes and products. Software Development has

assigned a project manager to serve as the main customer liaison for each of these customers, Far

Telco and Local Telco.

The project manager for Far Telco communicates with the customer primarily via email

messages and internet-supported conference calls. Far Telco shares its high level needs and

strategic direction with TelSoft at a yearly face-to-face planning session. More specific and

detailed planning occurs for software releases which are scheduled approximately every 6-8

months. The client documents the business requirements for new functionality; then,

communicates with the project manager to generate system level and functional requirements.

These are documented formally in a functional specification that is written by TelSoft and must

be approved before development work begins. The functional specification serves as the main

communication means used by quality assurance analysts for testing and by software engineers

for understanding what they should code. Once the code has been developed and integration

tested, quality assurance analysts perform certification testing and document any deviations

between the functional specification and the software product. If there are any changes to the

requirements after the functional specification has been approved, a change control document is

written to describe required change, perceived benefits, schedule impacts, and approval.

The project manager for Local Telco communicates with the client using a variety of means –

email, phone, and face-to-face meetings – to understand requirements for new functionality.

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 89

Local Telco takes a much more hands-off approach to requirements elicitation. It emails high

level requirements to TelSoft that includes bulleted lists or a few sentences; then, TelSoft

interprets those into more detailed system level requirements and provides these through

presentations or in documents for Local Telco‟s approval. Although TelSoft employees like

having control over the changes that occur in the software, problems sometimes occur because

Local Telco does not thoroughly review TelSoft‟s specification of requirements. As a result,

Local Telco is not always pleased with the delivered software.

Theoretical Interpretations
Given this background about the relationship between TelSoft and three of its primary customers,

we now apply the repeat-ability and response-ability theories and compare and contrast the types

of problems and recommendations each perspective brings to the data. For each theory, we

revisit the data collected during assessment of RE practices at TelSoft, we interpret these data

through the lens of each theory, and we present the result according to the five assumptions:

nature of requirements, requirements capture, requirements usage, change management, and

improvement approach.

Repeat-ability Perspective

Nature of Requirements
The repeat-ability theory assumes that requirements be explicated as texts in documents. At

TelSoft, the existing requirements documents did not meet stakeholder needs. The software

engineers commented that some sections of their technical requirements documents were no

longer applicable. They also desired more detailed requirements documentation when working

with Local Telco rather than relying on high-level documentation. They found the templates for

the functional specification used for Far Telco to be sufficient, but there was great variation in

the quality of this document depending on author:

“[Sometimes] we have somebody who‟s writing the functional spec who doesn‟t

know the product and doesn‟t know what kind of limitations we have because it is

an existing product. When that knowledge isn‟t there, it can make a product or a

project more expensive, more complicated. There is a point also where they want

to be able to do things that aren‟t possible within the structure.” (TelSoft software

engineer)

The Systems Analysts that write requirements documentation were also concerned that they had

sufficient application knowledge:

“I have no access to the software for which I am writing requirements. Some I

have never seen run. … A major need is to have machine(s) set up and maintained

… so I can confirm current data structures and GUI. This should be dual use: for

trouble report resolution, testing, documentation use; as well as for requirements.

It should connect to realistic, preferably client provided, data sets which truly

show their current models.” (TelSoft systems analyst)

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 90

Requirements Capture
The repeat-ability theory suggests formal interactions when capturing and approving

requirements. Unfortunately, TelSoft‟s Sales and Marketing representatives often capture client

requirements in unsystematic, non-documented ways as the basis for later interaction with

Software Development and Map Services. This leads to many interpretations and translations of

customer requirements, each introducing potential new sources of error.

Requirements inspections can be a useful mechanism for clarifying ambiguous statements,

documenting questions, and resolving issues. At TelSoft, review of requirements is often

performed in ad-hoc fashion where reviewers are unprepared and the critique is not

systematically fed back into the requirements process. The project manager for Local Telco

expressed pressure to rush the requirements review and “hit the milestone dates regardless”

because even a slip of a few days can upset the client. Several stakeholders noted that review

meetings were ineffective when key experts had not read the proposed requirements

documentation before the meeting. This can occur because of insufficient review time and

overloaded human resources:

“If you have somebody who is working on three projects and has a deadline at the

end of the week and somebody says „I need you to review this functional spec in

the next 48 hours‟, it doesn‟t happen. It just kind of falls through the cracks.”

(TelSoft software engineer)

For some enhancements, requirements documentation is electronically distributed rather than

discussed through face-to-face meetings. The quality of the comments received varies

considerably indicating that this is not the most effective method for surfacing issues and

building common understanding about requirements.

Requirements Usage
The repeat-ability theory stresses the value of establishing a requirements baseline before

beginning development activities. Once approved by the customer, this requirements baseline

serves as a contract between the customer and TelSoft regarding the capabilities of the delivered

software:

“If the software is delivered and we missed a requirement the client can say

„Excuse me‟ (raps desk as if to point to a specific missed requirement). On the flip

side, if client says „Oh, but it doesn‟t do this.‟ We can say, „Where does it say

that?‟ ” (TelSoft development manager)

Despite knowing the importance of an approved baseline, requirements sign-off at TelSoft

happens inconsistently across customers and informally via email and phone conversations. In

the interaction between Map Services and Software Development, obtaining of sign-off is not

enforced. This causes problems when there are disagreements about delivered functionality.

The repeat-ability theory states that requirements should be stored with traceability to the source

code. TelSoft experienced problems with both the repository chosen to store requirements and the

ease of traceability. One software engineer expressed frustration with the current database used

for storing requirements documentation:

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 91

“The problem with these technical documents is that once the project is done,

nobody sees them again. They get lost in this huge Notes database so that all that

time you spent on it … is wasted. The document has no value anymore. If a bug

gets called up on something, nobody knows where to go look for that

documentation. If you do, it can take an inordinate amount of time to find it.”

(TelSoft software engineer)

Because the documents are difficult to find and not always kept up-to-date, software engineers

rely on the code as the most credible source of requirements. The source code and requirements

documentation can also get out of sync during the design process. TelSoft‟s certification testing

frequently detects discrepancies between the software and the requirements documentation.

These discrepancies reflect design decisions that were discussed with the customer but not

appropriately documented.

Change Management
In the repeat-ability theory, requirements changes are exceptions to the basic course of

development and must be actively managed. Each requirements change must be documented

with reference to the requirements baseline and communicated to all relevant stakeholders.

TelSoft experienced problems in each of these areas.

Customer-initiated requirements changes are inconsistently documented. The project managers

for external customers document changes on forms specified by the customer. These forms

contain sufficient detail for TelSoft employees. With Map Services, change requests are usually

described via phone call, face-to-face visit, or brief email. These discussions are then

documented using a defect report.

Changes are not systematically communicated to key stakeholders, especially the quality

assurance group. Rather than being told when changes occur, quality assurance analysts have to

proactively check the requirements database for updates. This causes a delay in the quality

assurance analysts‟ re-work of the associated test cases.

Improvement Approach
Within the repeat-ability paradigm, improvement focuses on reducing process variance by

following best practices. Accordingly, processes should be defined; deviations from defined

process should be minimized; and a mechanism for refining defined processes should be

established.

TelSoft‟s current processes and templates do not explicitly support the management of

requirements change. Also, the documented legacy processes are quite different from actual RE

practices. Instead of repeating the same process over and over, TelSoft‟s practices for

documenting and changing requirements vary across customers. A common theme is that TelSoft

allows external customers to dictate their internal processes. TelSoft resorts to ad-hoc practices

when internal customers do not make those demands.

Finally, TelSoft‟s RE practices are not assessed and continuously improved. For instance, there is

no systematic process for tracking errors in requirements and software related to Map Services.

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 92

While software deficiencies are known, they are not tracked, root causes are not determined, and

appropriate interventions are not enacted. There is also no mechanism for ongoing process

management; therefore, documented RE processes are not evaluated with an eye toward

innovation.

Response-ability Perspective

Nature of Requirements
In the response-ability theory, requirements exist as shared understandings between customers

and software development. Since requirements are embedded in social relationships, tacit

knowledge is lost when people with customer related capabilities and knowledge leave. At

TelSoft, high employee turnover began to impact RE practices as senior-level employees

voluntarily quit to pursue other opportunities. In fact, in the year since we completed our

diagnosis, 7 of the 15 TelSoft employees interviewed are no longer with the company.

Requirements Capture
In the response-ability theory, requirements capture occurs informally and is seen as an ongoing

communication with customers. Because requirements are discovered through negotiation, close,

informal interactions with customers are essential during requirements capture. Here, we focus

on specific problems with interactions during requirements discovery.

In the relationship between TelSoft and Far Telco, there are insufficient information technology

tools in place to support requirements negotiation. For example, although the companies

communicate frequently via conference calls, TelSoft does not have access to software that

would support file sharing during these calls. Therefore, TelSoft is unable to see files created

during the meeting that other participants were discussing. Also, Far Telco maintains its own

database for storing high-level business requirements; however, TelSoft is not provided access to

the most-up-to-date version of this database. Instead, Far Telco must manually push the

requirements to TelSoft. These problems provide obstacles to requirements being effectively

shared between TelSoft and Far Telco.

In the relationship between Local Telco and TelSoft, other communications obstacles are more

salient. Local Telco does not trust TelSoft to deal with them fairly. Local Telco described TelSoft

as “throwing code over the wall” without performing adequate testing. Because Local Telco

doubted TelSoft‟s integrity during requirements capture, one manager requested that TelSoft “roll

back the covers” on processes, procedures, and tools.

TelSoft‟s weakest relationship is with the users who actually work with their software products

daily – even those that literally work around the corner from Software Development. TelSoft

does not become involved with end users to identify and anticipate changes and to support

training. This distant relationship means that TelSoft misses opportunities to understand customer

needs for their products. For example, a manager at Far Telco described trying to manage and

prioritize a list of 60 enhancement requests from the end user. She would appreciate more

assistance from TelSoft in screening and prioritizing these potential requirements.

Requirements Usage

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 93

In the response-ability theory, requirements development is not done upfront and documented in

requirements specifications. Requirements emerge throughout the development process. In this

theory, spending too much time documenting requirements can be problematic:

“It‟s always struck me that as much time as we spend writing these extremely

detailed technical specifications, nailing down exactly how we‟re going to do

every single step of the implementation, that we‟re basically stealing time from

ourselves of actually getting the job done right in terms of testing it – integration

testing and so on and so forth.” (TelSoft software engineer)

Key stakeholders also disagree about the value of other requirements documents. The Sales and

Map Services groups use a specialized requirements template called the Source-to-Target Matrix

for capturing requirements. The intention is to create this document during the bid process to

price the project. However, most clients spent little time specifying requirements upfront, and

they tend to primarily present their best case scenario and clean data sets. This leads to

inaccurate estimates and pricing when the exceptions are encountered and dirty data sets are

provided.

Change Management
In the response-ability theory, requirements changes are expected as a result of organizational

dynamics and close collaboration and interaction between customers and developers.

Requirements changes are therefore embraced as an important contribution to help develop

satisfactory software solutions.

There is, however, a lot of formality built into the requirements change process, in particular in

relation to Far Telco – in large part because Far Telco is a huge company having to integrate

applications from several vendors. This level of formality causes problems for some Far Telco

managers that would prefer to get changes quickly done without having to do the associated

paperwork.

Improvement Approach
Within the response-ability paradigm, improvement focuses on increasing customer satisfaction

through collaboration. TelSoft‟s external customers feel that there is room for improving the

amount of collaboration and the strength of the overall relationship. Local Telco representatives

are the most dissatisfied with this relationship:

“We don‟t have a partner relationship. A lot of times we kind of feel like there‟s

animosity from them toward us. I don‟t know how big of a customer we are in

their eyes, but I don‟t feel treated like a valued customer.”(Local Telco manager)

Both customers desire more face-to-face time with TelSoft. Far Telco compares TelSoft with

other vendors and notes that TelSoft lacks an onsite presence. They do not visit monthly, talk

about future plans for the software, or provide ongoing training. This leaves TelSoft at a

disadvantage when competitors use flashy sales presentations to impress upper management.

There are even indications that Far Telco would be willing to fund some reasonable amount of

travel to the site to have face-to-face interaction during RE.

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 94

Table 4: Problems and Recommendations

(#‟s refer to assumptions in Table 1: Theories of RE – Underlying Assumptions)

 Repeat-ability Response-ability

Problems Unsystematic early capture of

requirements (1, 2)

 Requirements documentation

does not meet stakeholder needs

(1, 3)

 Requirements baselines not

established and managed (2,3,4)

 Requirements not systematically

reviewed (3)

 Requirements documentation not

systematically updated (3, 4)

 RE practices vary across

customers (5)

 RE process incompletely defined

and different from practices (5)

 RE practices not assessed and

continuously improved (5)

 High dependency on people with

customer related capabilities and

knowledge (1, 2)

 Customer sites are visited

infrequently (1, 2)

 Requirements and changes not

effectively shared amongst

stakeholders (1, 2, 3, 4)

 Requirements documentation

hinders interaction during

development (2, 3, 4)

 Lack of feedback from customers

and quality assurance on software

solutions (3, 5)

 Lack of customer involvement in

test (3, 5)

 No systematic change management

(4)

 Lack of customer relationship

management (5)

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 95

 Repeat-ability Response-ability

Recommenda-

tions
 Expand RE process to include

systematic early capture of

requirements

 Revise requirements

documentation standards so they

meet the needs of all relevant

stakeholders

 Adopt two-phase funding to

enforce establishment of

requirements baseline

 Develop systematic process for

change management with

traceability between

requirements and source code

 Enhance discipline of the

requirements review process

 Standardize, document, and

enforce the RE process

 Adopt continuous improvement

mindset and establish systematic

process management disciplines

 Increase availability and

competence of people with

customer related capabilities and

knowledge

 Establish activities to increase

presence at customer sites

 Establish ongoing communication

of requirements amongst relevant

stakeholders and make up-to-date

documentation readily available

 Document high-level requirements

and establish systematic change

management

 Express detailed requirements

directly as software solutions

 Ensure systematic feedback from

customers and quality assurance on

interim software solutions

 Improve test to reflect customer

environments

 Establish a customer relationship

management program

Recommendations for Action
The results of interpreting RE practices at TelSoft based on the two theories are summarized in

Table 4. The table shows that both theories led to relevant, but quite different inventories of

problems. The suggested recommendations for action are also quite different, though both

inventories offer recommendations that potentially could improve RE practices. Because the

theories provide potentially relevant, but different insights into RE at TelSoft, the question

remains how to apply these recommendations to managerial decisions for improving RE

practices at TelSoft. To explore this question, we consider how the actual assessment at TelSoft

informed managerial decision-making on improving RE practices.

The comprehensive assessment report was created by the PST and presented to the SC for

approval. The problem areas from the RE assessment were categorized into seven improvement

areas: software vision management, project portfolio management, software configuration

management, customer relations management, requirements management, software quality

assurance, and end-user interaction. The PST found that TelSoft needed to better sense customer

needs as well as technological and market opportunities. TelSoft also needed to be more

proactive in its interactions with customers: sharing information about its software development

procedures to increase client confidence in the software product. Finally, TelSoft needed to adopt

a more disciplined approach to core activities related to RE. The PST hence recommended to the

SC that TelSoft adopt an overall improvement strategy to become a more adaptive enterprise by

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 96

increasing its sense-and-respond capability (Haeckel, 1995; Haeckel, 1999). The improvement

strategy should be implemented through a number of focused and dedicated projects with

assigned resources, clear success criteria, and specified deliverables. The projects should be

established, monitored, and coordinated through the PST. The SC approved the proposed

improvement strategy, and a kick-off seminar was organized in which the RE assessment results

and plans for improvement were presented to all employees in Software Development.

Management at TelSoft hence decided to adopt an improvement strategy that draws upon both

theories. First, the strategy has a clear focus on enhanced interaction and collaboration between

Software Development and internal and external customers; this is indicated by several

improvement areas: customer relations management, requirements management, software quality

assurance, and end-user interaction. TelSoft appreciated the importance of enhancing the

relationships between software developers and internal and external customers, and on involving

customers more actively in collaborative activities throughout the development process. Second,

the improvement strategy has a clear emphasis on increasing discipline in key parts of the

development process: software configuration management, requirements management, and

quality assurance. In each of these areas, management at TelSoft saw a need to adopt more

consistent processes and related tools. Finally, the strategy also focused on improving RE

practices beyond the project level. All projects a TelSoft addressed issues related to the two

primary software products: Map Displayer and Engineering Support Tool. Therefore,

management found it important to improve coordination and consistency across projects.

In summary, the response-ability and the repeat-ability theory both provide important insights

into problems and possible improvements of RE practices at TelSoft, and management‟s decision

on a strategy for improvement draws upon both theories. The strategy is, however, not a simple

merger of the two theories, but rather a negotiated compromise of the two theories for

improvement. While TelSoft decided to improve the discipline in key RE activities, they had no

desire to adopt statistical control and elaborate software metrics programs to help reduce

variation across practices. Similarly, while TelSoft decided to improve the social relationships

between developers and internal and external customers, they also insisted that it was important

to have clear contractual arrangements with customers, to baseline requirements, and to

systematically manage change request and the dynamics of their software configurations.

Haeckel‟s approach to the adaptive enterprise (1995; 1999) was seen as an overall organizational

approach that could help negotiate in detail such a compromise between the two theories.

Discussion
This research contributes to our knowledge of plan-driven versus agile approaches to software

development in general and RE in particular by explicating the repeat-ability and response-

ability theories and applying them to practices at TelSoft. Based on insights from the case, we

argue that a negotiated compromise between the two theories provides the most useful approach

to manage RE improvements. In this section, we elaborate on this contribution by relating the

findings from TelSoft to the research questions and by discussing implications for research and

practice.

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 97

Review of Research Questions
Our first research question focused on theory and asked about the key assumptions

distinguishing repeat-ability and response-ability theories of RE. Drawing upon the literature on

software process improvement and the literature on agile software development, we suggest that

these theories differ based upon their assumptions about: nature of requirements, requirements

capture, requirements usage, change management, and improvement approach. These findings

are summarized in Table 4: Problems and Recommendations. There is an ongoing debate (e.g.,

Boehm, 2002; Boehm et al., 2004; Paulk, 2001) over the relationship between the two most

influential contemporary paradigms for how to improve software practices, i.e. software process

improvement and agile software development, and most issues remains unresolved. This is

confusing and frustrating for managers who want to improve practices. The explication of the

repeat-ability and response-ability theories provides clarification on main differences between

the two paradigms, and it shows in particular how they apply to the key discipline of RE.

Our second research question focused on assessment and asked about differences in problem

identification and resulting recommendation when diagnosing RE practices based on the two

theories. Table 4 summarizes the findings from the two interpretations of RE practices at TelSoft.

The two theories led to quite different inventories of problems and, as a consequence, also to

quite different recommendations for improvement. In fact, there is little overlap between the two

sets of findings. At the same time, both inventories of problems made sense to managers at

TelSoft, and they were found to represent relevant and important issues related to RE practices.

This application of the two theories suggests that they represent different and relevant

perspectives on RE practices.

Our final research question focused on improvement and compared the resulting

recommendations from applying the response-ability versus repeat-ability theories with the

decisions made by management at TelSoft. Interestingly, management‟s chosen improvement

strategy drew on insights from both theoretical perspectives and was tailored to the particular

needs of TelSoft. When looking from Software Development towards internal and external

customers, it was considered essential for the firm to maintain a highly responsive and flexible

approach to deal proactively with both planned and emergent needs. The customers appreciated

these practices, they saw them as expressions of a real interest in providing a high level of

customer service, and they would like to enhance, rather than reduce these highly adaptive

behaviors. Similarly, when looking at how developers, managers, and analysts worked within

Software Development, it was quite clear, that practices were largely ad-hoc, established

processes were not followed, and priorities were made and adjusted in-flight as a result of

reactive responses to emerging demands. While there had been prior attempts to systematically

follow SW-CMM (Paulk et al., 1993) to improve practices at TelSoft, these initiatives had failed.

Also, while one project had experimented with agile software development, there were no

systematic attempts or plans to adopt agile approaches. Instead, management decided to

implement an improvement strategy which represented a negotiated compromise between the

response-ability and repeat-ability theories, drawing upon the strengths of each without

committing to extreme interpretations of either theory. This comparison between

recommendations based on the two theories to the actual improvement strategy adopted at

TelSoft suggests that the two theories represent complementary, rather than alternative

perspectives on RE practices.

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 98

These responses to the three research questions are based on a particular approach to investigate

RE practices at TelSoft with both strengths and limitations. Concerning reliability (Miles et al.,

1994), we structured the investigation around three specific research questions, explicated our

roles within TelSoft, explicated our theoretical constructs, used multiple sources of evidence, and

used the fundamental principle of the hermeneutic circle (Klein et al., 1999) to converge towards

a satisfactory interpretation. The reliability could, however, have been improved by instituting

further checks of the coding scheme and its application. Concerning internal validity (Miles et

al., 1994), we provided thick descriptions of the case and data, we linked data directly to the two

presented theories and to each of the assumptions that characterize them, and we adopted

systematic coding to relate the two theories to our data. The internal validity could be further

improved by having key actors at TelSoft confirm the presentation and by considering rival

explanations for how plan-driven and agile mindsets apply to the data from TelSoft. Finally,

concerning action orientation (Miles et al., 1994), we present findings that are accessible to

practitioners and researchers, the findings have proven useful to actors at TelSoft, and we have

made the findings more useful for actors outside TelSoft by aggregating key viewpoints into two

complementary theories of RE. The action orientation could be further improved by developing

specific knowledge on how managers can negotiate an appropriate balance between repeat-

ability and response-ability in other organizations.

Implications for Practice and Research
We began by considering a manager faced with problematic RE practices: what perspectives

should this manager apply to assess current practices and make recommendations for

improvement? Our research shows that applying either a repeat-ability or response-ability theory

limits what a manager can know about RE practices. The two theories speak, to some extent, to

different goals. For example, the response-ability theory emphasizes customer satisfaction

whereas the repeat-ability focuses on reducing process variance. In most practical situations,

neither of these goals can be ignored, and insights derived from the theories will therefore likely

clash (e.g., role of documentation in RE practices) when managers prioritize how to actually

improve RE practices. To get a more comprehensive understanding of RE situations in software

firms, managers are therefore advised to apply both theories and negotiate how to best combine

them to suit the particular context in which they operate.

Our research lends further support to efforts that seek to combine plan-driven and agile

approaches (Boehm et al., 2004; Salo et al., 2005). The two theories explicate a common ground

on which specific approaches can be evaluated, compared, and possibly combined with other

approaches. Most attempts to compare and contrast the two paradigms do not apply theory as a

basis for comparison or engage in theory-development to help us understand fundamental

differences and identify new opportunities. While the literature on plan-driven development and

process-focused improvement is clearly rooted in broader areas like Total Quality Management

and statistical control, it is interesting to note that the agile software development literature does

not explicitly draw upon theoretical insights on agility. The Agile Manifesto and related methods

are largely an expression of a software-specific grassroots movement that resists traditional

approaches to software development and emphasizes alternative values like: 1) individuals and

interactions over processes and tools; 2) working software over comprehensive documentation;

3) customer collaboration over contract negotiation; and 4) responding to change over following

a plan (Agile Alliance, 2001). Hence, we suggest that future research on combining plan-driven

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 99

and agile mindsets should apply theoretical lenses like repeat-ability and response-ability to

investigate alternative approaches to business software development.

Such future research should build on the extensive literature on organizational agility (e.g.,

Dove, 2001; Gunneson, 1997; Haeckel, 1995; Haeckel, 1999) which is currently ignored by the

software development discipline. Organizational agility requires “the ability to manage and apply

knowledge effectively, so that an organization has the potential to thrive in a continuously

changing and unpredictable business environment” (Dove, 2001, p. 9). Gunneson (1997) argues

that agility is concerned with economies of scope, rather than economies of scale. The idea is to

serve ever-smaller niche markets and individual customers without the high cost traditionally

associated with customization. While the ability to respond to events in the environment in this

way is the essential and distinguishing feature of the agile organization it is important to note that

issues related to effective planning and appropriate process design are also emphasized (Dove,

2001; Haeckel, 1995; Haeckel, 1999); lean organizations are usually associated with the efficient

use of resources, whereas agile organizations are related to effectively responding to a changing

environment (e.g. through implementation of a response-ability theory) while at the same time

being productive (e.g. through implementation of a repeat-ability theory).

As a case in point, the improvement of RE at TelSoft builds upon the principles of Haeckel‟s

adaptive enterprise design (1995; 1999). The intention is that such an approach will help create

macro-level improvements within the organization as well as micro-level improvements within

individual projects that can help TelSoft become more productive and respond more effectively

to customers. Whether these attempts to improve RE practices will succeed remains to be seen.

But they do set the stage for future research efforts that can help us develop alternative

approaches to business software development. When market and technology conditions are

relatively stable, one would expect an increased emphasis on repeat-ability on the macro-level

and as these conditions change, one would expect increased emphasis on response-ability.

Similarly, on the micro-level one would expect that the preference between the two theories

would depend on the complexity and uncertainty of the development task at hand. The findings

from this study could in this way guide future research efforts to investigate under which macro-

and micro-level conditions different combinations of repeat-ability and response-ability would

apply to development of business software.

Acknowledgements
This research was funded in part by TelSoft, Research Alliance, and a GAANN grant from the

U.S. Department of Education. We thank the participants at TelSoft for their enthusiasm and

openness during this ongoing industry-academia collaboration.

References
1. Agile Alliance "Manifesto for Agile Software Development",

http://www.agilemanifesto.org/, 2001.

2. Anderson, D. "Stretching Agile to Fit CMMI Level 3 - the Story of Creating MSF for

CMMI/Spl Reg/Process Improvement at Microsoft Corporation", in Agile Conference, July

24-29, 2005, pp. 193-201.

3. Avison, D., Lau, F., Myers, M., and Nielsen, P.A. "Action Research", Communications of the

ACM, (42: 1), January 1999, pp. 94-97.

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 100

4. Baker, S. "Formalizing Agility: An Agile Organization's Journey toward CMMI

Accreditation", in Agile Conference, July 24-29, 2005, pp. 185-192.

5. Baskerville, R. "Diversity in Information Systems Action Research Methods", European

Journal of Information Systems, (7: 2), June 1998, pp. 90-107.

6. Beck, K. Extreme Programming Explained: Embrace Change, Addison-Wesley, Reading,

MA, 1999.

7. Beecham, S., Hall, T., Britton, C., Cottee, M., and Rainer, A. "Using an Expert Panel to

Validate a Requirement Process Improvement Model", The Journal of Systems and Software,

(76: 3), June 2005a, pp. 251.

8. Beecham, S., Hall, T., and Rainer, A. "Defining a Requirements Process Improvement

Model", Software Quality Journal, (13: 3), September 2005b, pp. 247-279.

9. Boehm, B.W. "The Economics of Software Maintenance", in Proceedings of the Software

Maintenance Workshop, Washington, DC, 1983, pp. 9-37.

10. Boehm, B.W. "Get Ready for Agile Methods, with Care", Computer, (35: 1), January 2002,

pp. 64-69.

11. Boehm, B.W., and Turner, R. Balancing Agility and Discipline: A Guide for the Perplexed,

Addison-Wesley, Boston, 2004.

12. CMMI Product Team "CMMI for Systems Engineering/Software Engineering/Integrated

Product and Process Development/Supplier Sourcing", CMU/SEI-2002-TR-011, Software

Engineering Institute, 2002.

13. Cockburn, A. Writing Effective Use Cases, Addison-Wesley, Reading, MA, 2000.

14. Dove, R. Response Ability: The Language, Structure, and Culture of the Agile Enterprise,

Wiley, New York, 2001.

15. Galliers, R. "Choosing Appropriate Information Systems Research Approaches: A Revised

Taxonomy", in Information Systems Research: Contemporary Approaches & Emergent

Traditions, H. Nissen, H. Klein and R. Hirschheim (Eds.), Elsevier, Amsterdam, The

Netherlands, 1991.

16. Gunneson, A.O. Transitioning to Agility – Creating the 21
st
 Century Enterprise, Addison-

Wesley, Reading, MA, 1997.

17. Haeckel, S. "Adaptive Enterprise Design: The Sense-and-Respond Model", Planning Review,

(23: 3)1995, pp. 6-13, 42.

18. Haeckel, S. Adaptive Enterprise: Creating and Leading Sense-and-Respond Organizations,

Harvard Business School Press, Boston, MA, 1999.

19. Highsmith, J. Adaptive Software Development: A Collaborative Approach to Managing

Complex Systems, Dorset House Publishing, New York, NY, 2000.

20. Highsmith, J., and Cockburn, A. "Agile Software Development: The Business of

Innovation", Computer, (34: 9), September 2001, pp. 120-127.

21. Humphrey, W.S. Managing the Software Process, Addison-Wesley, Boston, MA, 1989.

22. Iversen, J., Nielsen, P.A., and Norbjerg, J. "Problem Diagnosis in SPI", in Improving

Software Organizations: From Principles to Practice, L. Mathiassen, J. Pries-Heje and O.

Ngwenyama (Eds.), Addison-Wesley, New York, 2002.

23. Klein, H., and Myers, M. "A Set of Principles for Conducting and Evaluating Interpretive

Field Studies in Information Systems", MIS Quarterly, (23: 1), March 1999, pp. 67-94.

24. Kotonya, G., and Sommerville, I. Requirements Engineering Processes and Techniques, John

Wiley & Sons, 1998.

www.manaraa.com

Paper 2: Negotiating Repeat-ability and Response-ability 101

25. Kuvaja, P., and Bicego, A. "Bootstrap - a European Assessment Methodology", Software

Quality Journal, (3: 3), September 1994, pp. 117-127.

26. Langley, A. "Strategies for Theorizing from Process Data", Academy of Management Review,

(24: 4), October 1999, pp. 691-710.

27. Markus, M.L. "Power, Politics, and MIS Implementation", Communications of the ACM, (26:

6), June 1983, pp. 430-444.

28. Mason, J. Qualitative Researching, (2nd edition ed.), Sage, London, 2002.

29. Mathiassen, L. "Collaborative Practice Research", Information Technology & People, (15:

4)2002, pp. 321-345.

30. McFeeley, B. "Ideal: A User's Guide for Software Process Improvement", CMU/SEI-96-HB-

001, Software Engineering Institute, Pittsburgh, PA, 1996.

31. McKay, J., and Marshall, P. "The Dual Imperatives of Action Research", Information

Technology & People, (14: 1)2001, pp. 46-59.

32. Miles, M.B., and Huberman, A.M. Qualitative Data Analysis: An Expanded Sourcebook,

Sage Publications, Thousand Oaks, 1994.

33. Orr, K. "Agile Requirements: Opportunity or Oxymoron?" IEEE Software, (21: 3), May-June

2004, pp. 71-73.

34. Paulk, M. "Extreme Programming from a CMM Perspective", IEEE Software, (18: 6),

November-December 2001, pp. 19-26.

35. Paulk, M., Curtis, B., Chrissis, M.B., and Weber, C.V. "Capability Maturity Model for

Software, Version 1.1", CMU/SEI-93-TR-24, Software Engineering Institute, Pittsburgh, PA,

1993.

36. Ramesh, B., Pries-Heje, J., and Baskerville, R. "Internet Software Engineering: A Different

Class of Processes", in Annals of Software Engineering, Kluwer Academic Publishers, 2002,

pp. 169-195.

37. Rapoport, R. "Three Dilemmas in Action Research", Human Relations, (23: 6)1970, pp. 499-

513.

38. Rout, T.P. "Spice: A Framework for Software Process Assessment", Software Process:

Improvement and Practice, (1: 1), August 1995, pp. 57-66.

39. Salo, O., and Abrahamsson, P. "Integrating Agile Software Development and Software

Process Improvement: A Longitudinal Case Study", in International Symposium on

Empirical Software Engineering, November 17, 2005, pp. 187-196.

40. Schmidt, R., Lyytinen, K., Keil, M., and Cule, P. "Identifying Software Project Risks: An

International Delphi Study", Journal of Management Information Systems, (17: 4)2001, pp.

5-36.

41. Sommerville, I., and Sawyer, P. Requirements Engineering: A Good Practice Guide, John

Wiley & Sons, New York, NY, 1997.

42. Susman, G., and Evered, R. "An Assessment of the Scientific Merits of Action Research",

Administrative Science Quarterly, (23: 4)1978, pp. 582-603.

43. Turk, D., France, R., and Rumpe, B. "Assumptions Underlying Agile Software-Development

Processes", Journal of Database Management, (16: 4), October-December 2005, pp. 62-87.

www.manaraa.com

 102

Paper 3: Managing Legacy and Current Processes

Title: Software Process Reengineering: A Model and Its Application

To an Industrial Case Study

This paper is coauthored by Nannette Napier, Jonathan Kim, and

Lars Mathiassen

This version of the paper was revised and submitted for

review at Software Process: Improvement and Practice

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 103

Abstract
Many software organizations engage in software process improvement (SPI), but software

processes may not be fully implemented and process descriptions may become outdated.

Moreover, some organizations suspend improvement efforts for a while before reengaging.

As a result, SPI initiatives may need to reengineer legacy processes that are inconsistent

with current software practices and policies. While the literature addresses how

organizations can reengineer business processes and legacy systems, no guidance exists on

reengineering software processes. Software Process Reengineering (SPR) is a transitionaln

activity that helps organizations effectively reengage in SPI by defining criteria for making

use of legacy processes; by assessing existing software processes against these criteria; by

selecting processes to be removed, innovated, or created; and, by instituting a process

management discipline to support continued improvement efforts. In this paper, we derive

principles for SPR, use these principles to propose a model for reengineering software

processes, and present an industrial case study to demonstrate the effectiveness of the

model. In the presented case, SPR had several benefits: it leveraged earlier investments in

legacy processes; it engaged key stakeholders in revitalizing improvement efforts; it

created a shared understanding of the organization‟s software practices; and, it established

a solid platform for continued SPI.

Keywords
Process implementation and change, reengineering, software management, software

process

1. Introduction
Studies of software process improvement (SPI) have identified critical success factors such

as continued commitment by management, involvement of respected technical staff,

allocation of sufficient resources, and a clear statement of improvement goals [1], [2].

Barriers to SPI success can come from a number of sources including technical staff that

consider it too time-consuming [2] and political pressures that focus more on obtaining a

specific level than creating actual improvements [3]. As a consequence, many

organizations struggle to advance in organizational maturity despite considerable

investments in process-driven approaches. One study showed that 23% of organizations

surveyed rated their SPI efforts as being marginally successful or not successful at all [4].

Process improvement models such as the Software Capability Maturity Model (SW-CMM)

and CMMI present idealized scenarios of how organizations steadily advance in maturity

through a series of lock-step phases [5], [6], [7]. By contrast, case studies of SPI reveal a

slow process which may consist of active periods of progress and success interspersed

with stagnating periods of disinterest and withdrawal of resources. In fact, one study found

that after completing an initial SPI assessment, 42% of organizations soon diverted

improvement resources to more pressing events and crises [8]. Given these shaky

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 104

beginnings, it is no wonder that moving from maturity level one to level two can take over

two years [9]. When organizations reengage with SPI after having focused resources on

other business issues, they do not begin with a clean slate; instead, they carry legacy

software processes and associated documentation from previous SPI efforts. These

processes may be inconsistent with current software practices and policies. This raises the

question of how organizations can effectively manage legacy software processes as they

reengage in SPI.

While the literature addresses how software organizations can manage legacy software

systems [10], [11], [12], there is no guidance on how they can manage legacy processes.

Similarly, there is advice for establishing a Software Engineering Process Group (SEPG)

to manage software processes [13]; however, no specific direction is provided for

transforming legacy processes as part of establishing a process management infrastructure.

When organizations reengage in SPI, one choice would be to simply ignore legacy

software processes and start creating new software processes. However, such an approach

does not allow the organization to leverage the investments made in existing process

capabilities, it requires that all processes are designed from scratch, and it easily reinforces

general mistrust in the value of SPI. We propose an alternative solution which reuses

knowledge embedded in legacy processes and institutionalizes a process management

discipline as a platform for continued SPI efforts. This approach requires knowledge on

how to reengineer software processes, including criteria for evaluating and selecting

relevant processes, and practical ways to integrate legacy processes into new practices.

In this paper, we review related work to identify principles for software process

reengineering (SPR). We then use these principles to propose a model for SPR that enables

software organizations to reengage in SPI by leveraging previous investments in process

capabilities. In Section 2, we define SPR in the context of SPI and, more specifically,

software process management. In Section 3, we derive SPR principles based on existing

knowledge on business process change [14], [15], [16] and reengineering of legacy

systems [11], [17]. In Section 4, we then propose a model for SPR, define its individual

elements, and detail the steps involved. In Section 5, we demonstrate the effectiveness of

the model by presenting an industrial case study. Section 6 presents conclusions and

future research directions.

2. Background

2.1 Software Process
A software process can be defined as “the coherent set of policies, organizational

structures, technologies, procedures, and artifacts that are needed to conceive, develop,

deploy, and maintain a software product” [18, p. 560]. In the SW-CMM and CMMI [6],

[7], software processes are key to increasing organizational maturity: mature software

organizations define processes and tailor them to specific projects; they establish an

infrastructure for managing software processes; and they use quantitative measures to

support continuous development of software processes [5], [6], [7]. Organizational

maturity is indicated by satisfying key process areas associated with five levels: initial (1),

repeatable (2), defined (3), managed (4), and optimizing (5).

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 105

In this paper, we focus on the documented software process es descriptions, shortened to

software thatprocesses, which an organization creates during SPI. These documents

software procesesesprocesses can take many forms including detailed, textual process

descriptions, work flow diagrams, templates, standards, and guidelines. We further

distinguish between legacy processes and managed processes. Legacy processes are

software processes that have become out-dated because changes have not been carefully

managed over time. The documented legacy processes have become inconsistent with the

organization‟s current policies and practices. Like legacy systems, legacy processes often

contain important business knowledge about successful operation of the software

organization. When these processes are not carefully maintained, they can suffer many of

the same problems as legacy systems: difficulty in modifying, out-of-date, and no longer

useful [17], [19]. Just as we are learning it is important to evolve legacy systems over time,

we must carefully consider why, when, and how to evolve legacy processes so they

become aligned with continued SPI efforts [20], [21], [22].

By contrast, managed processes are software processes that have a well-defined state,

represent current organizational policies, and are explicitly monitored and controlled.

Managed processes are in line to be approved and implemented into engineering practices.

Ideally, an organization would have a software process repository that contains only

managed processes and no legacy processes. To ensure that software processes are

defined, documented, measured and controlled [23], [24], organiations need to practice

software process management.

2.2 Software Process Management
SW-CMM and CMMI [6], [7] both provide guidelines for instituting a process

management discipline. The SW-CMM proposes five process areas related to software

process management: organization process focus (level three), organization process

definition (level three), training program (level three), quantitative process management

(level four), and process change management (level five). CMMI [7] describes similar

process areas related to process management and offers both a continuous and a staged

view for approaching SPI. The staged view prescribes an order that organizations should

follow for SPI which is consistent with SW-CMM. The continuous view encourages

organizations to customize their focus on process areas based on their current weaknesses,

overall strategy, and SPI goals.

Two of these process areas are particularly important for SPR: process definition and

process change management. Process definition (level 3) advises organizations to develop,

maintain, and explicitly manage standard process assets such as policies, procedures,

templates, or standards [7]. Process definition improves visibility into engineering and

management practices for all stakeholders and is a prerequisite to process automation and

quantitative process management [24]. Process change management (level 5) emphasizes

continuously improving processes used within the organization to increase quality and

productivity [5]. These two process areas work together to prevent legacy processes and

ensure that managed processes exist. This implies that organizations that have reached

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 106

level three are less likely to have legacy processes because the documented standards are

actively maintained and quality assurance verifies that organizational performance is in

line with standards. Those organizations that have reached level five have the added

protection of being good at process change management. As they discover better ways of

doing executing a process, they have procedures in place to fold those innovations into

standard processes. This discipline keeps standards up-to-date with the company‟s local

best practices.

If organizations adopt SW-CMM or the staged view with CMMI, they will develop a

portfolio of software processes (e.g. organizational process definition) before they have

completely instituted proper process management (e.g. process change management).

Hence, they risk creating a situation that allows legacy processes to accumulate. If

organizations adopt a continuous view, they can choose to institute a process management

discipline at an earlier stage, thereby reducing this risk. There is, however, no awareness in

the literature that such a risk exists and should be addressed. Therefore, it remains to be

seen how widespread such practices will become.

2.3 Software Process Reengineering
The term SPR has previously been associated with defining processes to reengineer

software:

“Software process reengineering should result in a self-improving software

process for updating and renewing software on an ongoing basis… The

reengineered software process should include the activities involved in

creating, selecting, and integrating reusable software components into new

applications” [10, p. 72-73]

We agree with Ahrens et al. [10] that developing effective processes for reusing and

reconfiguring software components is an important research area. However, SPR involves

more than just software components used to build applications. It also involves people,

management strategies, and organizational infrastructures. In general, reengineering

involves the systematic analysis and modification of a system to allow transforming it into

a new format [25]. For example, business process reengineering (BPR) transforms

organizations into new forms by reconfiguring people, technology, and processes in a

more rational way to better support business strategies and objectives [26].

Similarly, for organizations reengaging in SPI, SPR transforms their legacy processes into

managed processes and institutes a process management discipline. Organizations with a

substantial portfolio of legacy processes must attend to these legacy processes through

SPR before engaging in continued SPI efforts. SPR is hence a one-time activity to get SPI

back on track by transforming legacy processes to managed processes, by generating a

process repository, and by developing a process management plan. These resulting

deliverables subsequently become the foundation for moving SPI forward based on a

strong process management discipline as shown in Figure 1. In this paper, we describe a

model for conducting SPR to generate the three deliverables, and we demonstrate how this

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 107

model was used at TelSoft to establish a software process management discipline and bring

the organization‟s SPI efforts back on track.

In summary, we define SPR as follows:

SPR defines criteria for transforming legacy processes; assesses existing

software processes against these criteria; and selects which processes

should be removed, innovated, or implemented. SPR establishes on that

basis a repository of managed software processes and institutes a process

management discipline to support continued improvement efforts.

In the context of mature software organizations, the need for SPR is not apparent:

organizations that reach level five would not develop a backlog of legacy processes and

need to engage in SPR. However, less than 45% of organizations investing in SPI report

even reaching level two [27]. As organizations struggle to find effective paths towards

increased maturity, they may linger between levels without successfully advancing to level

three. As a result, these organizations will start accumulating legacy processes that

increasingly become misaligned with current practices and policies.

This was the experience at TelSoft, a US based provider of software solutions for the

telecommunication industry. TelSoft restarted SPI after a three year hiatus. They had

previously developed several processes with extensive documentation. These processes

had, however, not been maintained so they were no longer consistent with current software

practices and policies. Faced with these legacy processes, we engaged in developing

principles and a model for SPR and applied them to reengineer legacy software processes

at TelSoft.

3. Principles for Software Process Reengineering
Fuggetta [18] states that “software processes are processes too”, reminding SPI

practitioners and researchers to learn from other communities concerned with managing

Figure 1: Relationship between Software Process

Reengineering (SPR) and Software Process Management

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 108

processes. Following this suggestion, we consult the broader literature on business process

change to derive principles for SPR. Moreover, reengineering principles have been applied

with success to evolve legacy software systems. Therefore, we also review this literature to

inform our approach to SPR.

3.1 Business Process Change
In general, business process change [14] refers to strategic initiatives designed to improve

organizational performance and product quality by redesigning and innovating business

processes. Business process change initiatives such as BPR [28], [29], process innovation

[30], and business process management [31], [32] are based on total quality management

(TQM) [33], [34],. TQM has been proposed in the context of system development [35].

From TQM perspective, process management is one of the key components for quality-

oriented organizational system [36]. Within the software engineering industry, SPI has

been a dominant form of business process change. SPI can be affected by management

infrastructure factors such as support of top management support and participation of

stakeholders which are proposed from TQM literature [37]. SPR represents another form

of business process change designed specifically to bring legacy process under process

management control.

Consider Organizational Context
Business process change begins when senior management articulates a new vision for

operations as well as an approach for transforming business processes [14], [38]; such

guidance is frequently represented in vision statements, goals, and policies. When

considering which actions will lead to the desired state, management cannot simply

generically apply industry best practices to the situation. Instead, the change initiative must

consider important elements of the business environment such as the organizational

culture, existing policies, industry regulations, and norms and values [14].

Internal and external stakeholders serve as primary, first-hand sources for understanding

the business environment, and they have a rich base of knowledge for action planning [39].

Therefore, the organization should leverage stakeholder knowledge about established work

practices as well as possible process revisions and designs. An added benefit of having

internal stakeholders involved is that it is likely to breed enthusiasm about the change

initiative and counter any cynicism that could negatively impact change efforts [2], [40].

Involving the organization‟s external stakeholders can help enhance customer satisfaction

during business process change [14], [41]. Therefore elicitation of various viewpoints on

processes from diverse users is needed to create merged, consistent process models [42].

As business processes frequently cross organizational boundaries, it is also important to

consider inter-organizational relationships when redesigning business processes [14]; for

example, business partners need to be made aware of and agree to changes to process

interfaces that will impact their work practices. Curtis et al. [43] further emphasize that

making key processes visible improves coordination.

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 109

This way of situating change initiatives in the organizational context has already been

recognized in the software engineering community through, for example, the Goal-

Question-Metric (GQM) approach to measurement; GQM requires managers to tailor

goals to the organizational context in question [44]. These insights suggest that SPR

should be guided by the following principle:

Principle 1: SPR should consider the organizational context by identifying

goals and policies for SPI and incorporating viewpoints of internal and

external stakeholders.

Consider Change Practices
Before changing existing processes, initiatives should thoroughly assess current change

practices [30], [38]. Generally, the organization‟s history with change initiatives indicates

its ability to handle future initiatives. By definition, organizations engaged in SPR have

experienced prior difficulties with SPI and have immature process management discipline.

Organizations engaging in SPR should therefore learn from previous failures and be

prepared to adopt new approaches to address the risk of failing again. Data should be

gathered about successes and failures in previous change initiatives, strengths and

weaknesses in current process documentation, and, about potential process revisions and

redesigns. Organizations are advised to document these data so they can be shared across

the organization and support action planning [45]. When considering which business

processes should be modified, managers should challenge existing assumptions and

practices [14], [30]. Use of consultants or change agents from outside of the organization

can facilitate that process.

These insights suggest the following SPR principle:

Principle 2: SPR should consider the organization’s change practices by

critically reviewing previous SPI initiatives and results and by taking

measures to avoid previous failures.

Leverage IT
Early BPR proponents perceived IT as an enabler of the innovative redesign of core

business processes [30], [46]. Investments in IT infrastructure can facilitate relatively

quick changes to business processes while outdated or inflexible IT infrastructures can

constrain or inhibit process change [30]. An appropriate level of IT infrastructure is hence

needed [47]. First, IT can enable process innovations by providing new capabilities for

collecting, storing, and sharing data relevant for process execution [14]. Second, IT can

facilitate the creation, sharing, and communication of process knowledge. For example,

much research has been conducted around alternative software processs models and tools

to support improvement efforts [24], [48], [49].

Although IT itself does not have power to change processes, using it for the management

of process knowledge is critical to the success of SPR. Process knowledge needs to be

shared and communicated on a platform that provides easy access and management of

software processes. Tools like groupware and web portals can reduce the cost of analysis

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 110

and enable many different stakeholders to participate in SPR [50]. The same approach has

been applied to make reusable software components such as web services available at

portals [51]. IT can in this way support a more collaborative approach to SPR and help

make change happen. As organizations engage in SPR, they should therefore consider how

to establish and leverage an appropriate IT infrastructure:

Principle 3: SPR should leverage IT capabilities to establish a platform for

effective storage, communication, and usage of managed processes.

3.2 Legacy Systems Reengineering
Reengineering principles have already been adopted within software organizations in

relation to legacy systems. Legacy systems are aging business software that are

increasingly difficult to modify and evolve [17]. Legacy systems are often critical to

businesses and contain embedded requirements and business knowledge. Such systems are

problematic because they are difficult to evolve, are expensive to maintain, and use

obsolete technology [19]. Software organizations face similar challenges related to legacy

processes, and we therefore consider how principles for dealing with legacy systems apply

to SPR.

Apply Multiple Strategies
Multiple strategies are offered when reengineering legacy systems. First, the

redevelopment strategy, also called Big Bang or Cold Turkey [17], advocates complete

replacement of the legacy system, very much in line with BPR advocates. This strategy is

most appropriate when the business environment requires significant changes from

existing systems; however, this approach is resource intensive and does not reuse existing

knowledge. In addition, in a rapidly changing environment, the new system can become

obsolete before development is completed. Second, the migration strategy moves an

existing system to a new platform while retaining key functionalities of the legacy system

and causing as little disruption to the operational and business environment as possible

[11]. Finally, the wrapping strategy ensures reusability of existing code by refactoring

legacy systems into modularized components with a well-defined interface [52]. Wrapping

is considered a practical solution as it involves the lowest costs and the fewest risks.

However, compared with redevelopment and migration, the wrapping strategy also has a

minimal impact on improving legacy systems.

These insights suggest that a contingency approach should be taken when selecting the

best strategy for reengineering legacy systems; that is, different approaches are appropriate

based upon the business context and the specific legacy system under consideration. When

organizations engage in SPR, they should therefore consider a wide range of options. In

one extreme, radical approaches to SPR discard legacy processes and replace them with

new ones; in the other extreme, incremental approaches identify and implement

improvements in existing processes. Accordingly, legacy processes that are no longer

considered useful with regard to current engineering practices and conditions may be

redeveloped [17]; legacy processes that are potentially useful, but require reconfiguration

and change may be migrated [11], [19]; and, legacy processes that have potentially useful

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 111

components or that are currently inappropriately documented may be wrapped [52]. Hence

the following principle for SPR:

Principle 4: SPR should rely on multiple strategies that are contingently

applied based upon current process portfolios and engineering practices.

Adopt Iteration
Another theme that emerges from reengineering of legacy systems is iteration. Engineering

is generally an iterative rather than a purely linear process [53]; iterative approaches have

been actively promoted within the software engineering discipline for more than three

decades [54], [55]; and several SPI approaches such as the IDEAL model recognize the

iterative nature of SPI (e.g., plan-do-act-check) [38], [56], [57]. Iteration allows learning to

take place which can feed changes in later development cycles [54], [55]. In addition,

iterative SPR practices can reduce resistance from employees and help process engineers

better learn the targeted processes [56].

Bianchi et al. [58] explicitly describe an iterative reengineering strategy in which

engineers select a small number of legacy components and apply iterative reengineering

processes to these components. Engineers subsequently repeat this reengineering approach

to other sets of components. The goal is hence to improve the quality of software systems

continuously while guaranteeing coexistence among the various components. In the same

vein, SPR should iteratively select a subset of legacy processes, assess the usefulness of

those processes, and decide upon an appropriate plan for action. This process should

continue until all legacy processes have been discarded or transformed into managed

processes.

Principle 5: SPR should iteratively turn legacy processes into managed

processes to enhance learning, facilitate change, and establish a baseline

for continued SPI.

4. SPR Model
We have applied the five principles above to construct a model for conducting SPR (see

Fig. 2 Figure 2). The SPR model takes three inputs: an improvement organization,

software policies, and legacy processes. The iterative SPR steps subsequently produce

three deliverables or outputs: managed processes, process repository, and process

management plan. Each of these components is briefly discussed below.

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 112

SPR Components

Improvement Organization
There is no single, best way to organize SPR; the most feasible organization depends on

how improvement is generally organized within the organization and on the specific

portfolio and status of legacy processes (SPR Principle 2). The general improvement

organization provides leadership and context for SPR. Effective organizational structures

discussed in the SPI literature, such as the SEPG [13], process action teams [7], and the

experience factory [59], can help organize SPR as part of SPI. It is important to remember

success in any SPI effort requires continued commitment by management, allocation of

sufficient resources, and a clear statement of improvement goals [2]. Also, it is advisable

SPR efforts involve well-respected software engineers and managers that give legitimacy

to the project [2] and can express viewpoints from various stakeholder groups (SPR

Principle 1). There will likely be several teams established as part of SPR, each with

different and complementary responsibilities, e.g., to take stock of legacy processes (SPR

Principle 2), to assess current process management practices, or, to design and implement

a new process repository (SPR Principle 3).

Software Policies
In general, policies are guiding principles identified by senior management to guide

decision-making and drive day-to-day operations [7]. In particular, software policies

explicate the organization‟s governing principles for successful software development.

Using governing principles rather than a command and control paradigm helps an

Figure 2: Software Process Reengineering (SPR) Model

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 113

organization to become more effective and adaptive in the dynamic contexts that

characterize the software industry [60], [61]. Employees are provided with key principles

that are enforceable and that state what to do and what not to do, without unnecessary

details about how to do it. This empowers them to respond effectively and quickly in the

best interest of the organization [60], [61], [62]. Before beginning SPR, the organization‟s

current software policies should therefore be explicated to define the basis for SPR and to

establish a strong foundation for continued SPI efforts (SPR Principle 1). We later show

how software policies can be used to prioritize which legacy processes to discard now,

revise immediately, or redesign later.

Legacy Processes
Legacy processes are documented software processes that exist at the beginning of SPR.

Legacy processes should be critically examined to determine their status (SPR Principle

2). We specifically recommend that SPR systematically characterize all legacy processes

on the basis of two key characteristics: documentation status and implementation status

(SPR Principle 4). Documentation status indicates how well the process is described to

support software practice and comply with standards for process documentation.

Implementation status indicates the extent to which the organization‟s day-to-day practices

align with the process. The combination of documentation status and implementation

status is used to guide prioritizing activities during SPR.

SPR Steps
The SPR process requires coordinated efforts of many people within the organization.

Legacy processes are transformed to managed processes by iteratively characterizing and

modifying their status (SPR Principle 5). SPR considers a range of approaches when

turning legacy processes into managed processes (SPR Principle 4). Each step provides

additional clarity on opportunities and challenges related to bringing all legacy processes

under management control. The steps are based upon the generic process improvement

model IDEAL [38] (see section B for details).

Managed Processes
Managed processes are software processes under management control: they have been

assigned a non-obsolete documentation and implementation status; they are available from

the process repository; and they are addressed through continuous process management.

Periodically, the current implementation status of each managed process is evaluated

against a desired level of implementation. The documentation status is also reassessed to

determine if changes are needed. Any changes to managed processes must follow the

improvement organization‟s defined policy for change management.

Process Repository
The process repository is an IT-based resource that facilitates effective storage,

communication, and usage of all managed processes (SPR Principle 3). The technological

platform used could include company website, intranet, and internal documentation

management system. It serves as an effective communication medium for key stakeholders

regarding relevant software processes (SPR Principle 1). For example, a software process

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 114

describing the software testing procedures would be of interest to both internal and

external stakeholders; however, the details of tracking software defects would be important

only for internal stakeholders. The repository should allow each stakeholder group easy

access to relevant software processes (SPR Principle 3).

Process Management Plan
The process management plan describes the activities and mechanisms that the

improvement organization will adopt for continuous software process management after

SPR completion. The process management plan should be based on a realistic and

sustainable approach for implementing a process management discipline (SPR Principles 2

and 5). For example, a process management group could be established and given

responsibility for activities such as approving software processes, monitoring compliance

with approved software processes, deciding whether new processes should be created,

deciding on the standards for process descriptions, and prioritizing work done on

innovating and improving software process management. The process management plan

should also describe how to maintain an up-to-date and easy-to-access process repository

(SPR Principle 3) and be sensitive to the needs of both internal and external stakeholders

(SPR Principle 1).

4.2 SPR Steps
In this section, we specify steps for conducting SPR using the IDEAL model [38] as

framework. The IDEAL model consists of five generic steps used for implementing SPI:

Initiating the project, Diagnosing current practice, Establishing an action plan, Acting out

that plan, and Learning from these actions. These steps are served to create and embed

relevant knowledge for SPI (Ravichandran and Rai).

Initiating
The objectives of the initiating phase are to understand the need for SPR, determine

readiness to proceed, and create an overall plan and supportive infrastructure for the

project [38]. Specifically, we advise the following activities:

I.1 Assess need for SPR. Organizations that previously invested in documenting software

processes through SPI are candidates for SPR; however, not all companies that have

started and stopped SPI will find it beneficial or cost-effective to engage in SPR. After all,

the problems driving SPR – large body of legacy processes, lack of software process

management discipline, and inadequate process repository – could also be solved by using

an approach that starts over from scratch. SPR is appropriate when the organization

attaches value to the knowledge embedded within the legacy processes despite the need for

cleanup. A decision to proceed with SPR recognizes existing problems and assumes there

is important knowledge that should not just be thrown away.

I.2 Determine readiness for SPR. Having recognized that there is a problem, the

organization must determine whether they are ready to proceed with SPR. First, the

organization should reflect upon its prior successes and failures in process implementation

and try to draw upon lessons learned to enhance their future success rate (SPR Principle 2).

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 115

Second, the organization should heed important lessons from the SPI literature on

implementation success: secure sufficient management commitment and allocation of

resources [63], [64]. Finally, the organization should ensure that the inputs to SPR are

known. Software policies should have been explicated prior to beginning SPR, or they

should be explicated from the very start. These software policies ensure that the SPR effort

is well aligned with the organization‟s SPI strategy (SPR Principle 1). At this stage, it is

also important to create a list of all legacy processes in preparation for subsequent

evaluations.

I.3 Establish appropriate improvement organization. Once the organization has

demonstrated commitment to the effort, an appropriate improvement organization should

be created to execute and facilitate SPR. This would involve: a dedicated SPR project and

its relation to the overall improvement organization, e.g. in the form of the SEPG and the

steering committee for SPI [6], [13]. The SPR project should be provided with adequate

resources, be staffed with respected and influential employees, and represent varied

stakeholder perspectives (SPR Principle 1). As part of establishing an appropriate

improvement organization, plans for SPR should be detailed and expectations and

responsibilities should be explicated.

These initiating activities ensure that the three inputs to the SPR process – legacy

processes, software policies, and improvement organization – are in place.

Diagnosing
The key objectives of the diagnosing phase are to understand current practices and to

establish a baseline for further improvement [38]. We suggest the following key

diagnosing activities in SPR:

D.1 Characterize legacy processes. The improvement organization should systematically

characterize the documentation status, current implementation status, and desired

implementation status for each legacy processes (SPR Principles 2 and 4).

Documentation status: Legacy processes are evaluated with respect to conformance with

documentation standards; consistency with software policies and overall strategic

direction; and clarity of process description. A described process should also represent best

practice within the organization. Using these criteria, the improvement organization may

use the following scale to characterize documentation status for each legacy process:

 Obsolete – The legacy process is no longer appropriate and should be deleted.

Technological and organizational changes can cause a legacy process to become

obsolete. A legacy process may be labeled obsolete if it is inconsistent with current

software policies, provides wrong level of detail to be valuable, suggests ideas that are

no longer considered best practice, or relies on technologies that are no longer relevant

to the company (e.g. coding guidelines for a programming language no longer in use).

 Needs revision – The legacy process needs revision to be useful for practice. These

revisions could range from minor changes, such as ensuring conformance with

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 116

documentation standards, to major ones, such as ensuring alignment with current

software policies.

 Needs approval –The legacy process is ready to be reviewed for approval. This means

that the legacy process meets standards for conformance, consistency, clarity, and best

practices.

 Approved – The legacy process has been reviewed by the appropriate group within the

improvement organization and is ready to be implemented.

Implementation status: Decisions on which legacy processes to reengineer should be based

on realistic assumptions about their implementation (SPR Principle 2). Based on [65], the

improvement organization may use the following scale to characterize implementation

status for each legacy process:

 Not used (<20%) – The legacy process is either used rarely within the organization or

used by only a small subset of the organization.

 Discretionary (<60%) – The legacy process is used at the discretion of the project

manager and may not be applicable for all projects.

 Normally used (<90%) – The legacy process is used consistently by almost all projects

within the organization; however, there are a few known compliance issues that need

to be addressed.

 Standardized (>=90%) – The legacy process is institutionalized within the

organization‟s culture and daily practices and adapted to the needs of each new project.

D.2 Assess process repository. The existing process repository platform should be

evaluated based on its usefulness, ease in locating related process documents, and

suitability for both internal and external stakeholders (SPR Principles 1 and 3). There are a

number of documented techniques that can be applied to evaluate process repositories

[66], [67], [68].

D.3 Diagnose process management. Existing process management practices should be

evaluated. Various strategies for process assessment can be applied [69], [70].

Appreciative inquiry focuses on identifying the strengths of the organization and on

positive change [71]. Problem-based approaches focus on identifying and solving

problems seen as hindering process management [72]. Finally, model-driven approaches

compare current practices against best practices with discrepancies indicating areas where

improvement is needed [72]. Generic best practices for process management are available

in [5], [7].

When these three diagnostic activities have been completed, the improvement organization

will have taken the first steps to bring the legacy processes under management control,

identified the strengths and weaknesses of its process repository, and assessed current

process management practices. These insights should be communicated to stakeholders

outside of the SPR team for confirmation and debate.

Establishing

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 117

The establishing phase uses diagnostic information to create a strategic action plan for

SPR which contains both short-term and long-term goals [38]. The action plan should

address improvements of managed process documents, the process repository, and

software process management practices:

E.1 Assign action status. The SPR team should identify the appropriate actions on each

processes based on its specified documentation and implementation statuses. Given limited

resources, a major portion of creating the SPR action plan involves prioritizing and

scheduling which legacy processes to be innovated. Decisions on which processes to

innovate should be based on realistic assumptions about their implementation (SPR

Principle 2). A comparison between current and desired implementation status can help

prioritize. The SPR team may gain most by focusing on processes with the biggest gap

between desired (e.g. standardized) and current (e.g. not used) implementation status.

Alternative prioritization schemes could use factors such as available resources,

dependency with other processes, degree of changes needed, number of stakeholders that

need access to the legacy process, and degree to which this process aligns with strategic

priorities.

Action status: A variety of actions should be considered – from radical replacement to

minor revisions (SPR Principle 4). Accordingly, each process should be assigned one of

the following action statuses:

 Discard – These processes should be moved to an archive database or deleted. Legacy

processes with documentation status of “obsolete” will most likely be discarded.

 Redesign later – These processes need modification; however, they are given a low

priority at this time.

 Redesign now – These processes are considered important to the organization but need

modification to more closely reflect desired practices. These legacy processes have a

documentation status of “needs revision” and will be immediately addressed by the

improvement organization.

 Submit for approval – These processes have a documentation status of “needs

approval” and should be scheduled for review as soon as the process management

infrastructure has been firmly established.

E.2 Redesign process repository. The SPR action plan should also suggest innovations for

the process repository based on the diagnosis of the existing platform. The suggested

changes will depend heavily on the results of the diagnosis. However, in general, the

improvement team should ensure that the repository: meets the needs of both internal and

external stakeholders; provides straight-forward, easy access to relevant documents;

applies configuration management to ensure only the most up-to-date document gets

updated; and, provides capabilities to archive documents that are no longer useful without

deleting them (SPR Principle 3).

E.3 Outline process management plan. Finally, the action plan should address topics such

as determining standards for process documents, auditing new processes to ensure that

they meet these standards, issuing approval for documents, identifying processes that need

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 118

revision, and carrying out ongoing management of the process repository. These activities

should be included into the process management plan to create a sustainable basis for

continuous process management after SPR (SPR Principle 5); otherwise, the organization

will again find itself growing more legacy processes over time.

As suggestions are being made during the establishing phase, it is important to consider

strategies for mitigating possible resistance to change [73], [74]. A detailed

implementation plan should include milestones, involvement of key stakeholders, and

mechanisms for measuring and tracking progress. In keeping with the iteration principle

(SPR Principle 5), the action plan should strive for small iterations of successful change.

Acting
During the acting phase, the strategic action plan is executed, deploying changes

throughout the organization [38]. With SPR, this involves the following activities:

A.1 Reengineer legacy processes. SPR should be concerned with the documents as well as

their impact on implementation efforts. Processes should be reengineered according to the

action status assigned during the establishing phase. If action is needed, resources are

assigned to make these changes (e.g. remove document from repository, bring document

inline with standards, or modify to reflect desired best practices). Depending upon the

scope of the change, this may involve considerable interaction and discussion among many

members of the organization. Software processes that have been submitted for approval

are reviewed by the appropriate process management team based upon conformance,

consistency, clarity, and desirability for best practice. If the document is approved, this

review should further consider how to ensure a smooth transition to the newly documented

processes. Advice on implementing process change can be found in [4], [56], [64], [75].

At a minimum, employees should be made aware of the changes and told where to find the

newly approved documents in the process repository.

A.2 Develop process repository. Following the proposed redesign, a new process

repository is developed and tested for compliance with relevant stakeholder needs.

A.3 Pilot process management. A process management group should be identified to pilot

the mechanisms outlined in the process management plan. Lessons learned from this

experience can lead to refinements of the plan for continuous process management.

Implementing the SPR action plan is a highly iterative process in which solutions must be

tested and modified (SPR Principle 5). Compared with other phases, it requires substantial

amount of time and resources as many stakeholders have to work together to help turn new

solutions into organizational practices.

Leveraging
The leveraging phase is a time of critical reflection in which lessons learned during earlier

phases are used to inform future SPI cycles [38]. With SPR, this involves two activities:

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 119

L.1 Evaluate achievements. The SPR team should collect data from the effort, analyze

them, and suggest important lessons learned. In particular, it should evaluate whether the

intended objectives were met.

L.2 Determine whether to exit. The SPR team should decide whether to exit from the

IDEAL cycle or whether additional cycles are required to meet project objectives. SPR is

complete when all legacy processes have either been approved or discarded, the process

repository has been revised to meet relevant stakeholder needs, and the process

management plan has been approved and piloted. If the criteria for ending SPR are not

met, a new SPR cycle can be started from any of the previous phases. If the criteria for

ending SPR are met, the organization is ready to focus on software process management

and continued SPI efforts. Table 1 summarizes the impact of the SPR principles on each of

the SPR steps.

Table 1: Impact of SPR Principles on SPR Model

SPR principle Implications for SPR Steps

1. SPR should consider the

organizational context by

identifying goals and

policies for SPI and

incorporating viewpoints

of internal and external

stakeholders.

 The organization‟s current software policies should be

explicated and used as drivers for SPR. (IDEAL)

 The improvement organization should contain

representatives from various stakeholder groups. (I)

 Consider the viewpoints of internal and external

stakeholders during the transformation of legacy processes

to managed processes. (DEA)

 When creating the process repository and process

management plan, ensure that they meet the needs of both

internal and external stakeholders. (DEA)

2. SPR should consider the

organization‟s change

practices by critically

reviewing previous SPI

initiatives and results and

by taking measures to

avoid previous failures.

 Review successes and failures in past process

implementations to enhance the success rate. (I)

 Legacy processes should be critically examined to

determine their current usefulness and implementation

status. (D)

 Decisions on which legacy processes to innovate and

implement should be based on realistic assumptions about

their implementation. (EA)

 Process Management Plan should be based on a realistic and

sustainable approach to implement a process management

discipline. (DEA)

3. SPR should leverage IT

capabilities to establish a

platform for effective

storage, communication,

and usage of managed

processes.

 The process repository should facilitate effective storage,

communication, and usage of all managed processes.

(DEAL)

 The repository should allow stakeholders easy access to

apply relevant software processes. (DEAL)

 The process management plan should maintain an up-to-

date and easy-to-access process repository. (DEAL)

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 120

SPR principle Implications for SPR Steps

4. SPR should rely on

multiple strategies

(redevelopment,

migration, and wrapping)

that are contingently

applied based upon current

process portfolios and

engineering practices.

 SPR should systematically characterize all legacy processes.

(DEA)

 SPR should consider a range of actions when turning legacy

processes into managed processes. (EA)

5. SPR should iteratively

turn legacy processes into

managed processes to

enhance learning and to

develop a sustainable

baseline for continued SPI

 The SPR model follows the IDEAL [38] iterative

improvement model. (I)

 Legacy processes are transformed to managed processes by

iteratively characterizing and modifying their status. Each

step provides additional clarity on the opportunities and

challenges related to bringing all software process under

management control. (DEA)

 The process management plan should create a sustainable

basis for continued SPI. (DEA)

5. Industrial Experience
We proceed to describe how our collaboration with TelSoft raised awareness of the need

for SPR as well as provided an environment for applying the proposed SPR model to

industrial practices.

5.1 SPI History and Context
TelSoft has roughly 50 employees dedicated to software development. Over the last 35

years, TelSoft has evolved from being an engineering services firm primarily performing

computer-aided drafting to becoming a software solutions provider that customizes

geographic information systems for telecommunications and utilities industries. In this

section, we present TelSoft’s two major SPI initiatives which set the stage for SPR (as

summarized in Table 2).

First SPI Initiative
Wanting a definitive measure of its software engineering proficiency, TelSoft‟s

management set a goal of reaching level three on the SW-CMM. To that end, in July 2000

TelSoft established an SEPG [13] consisting of a project manager, three standing

committee members, and rotating representatives from each of the four major groups

within software development. The SEPG informally assessed TelSoft at SW-CMM level

one.

The group met to consider how processes could be improved. They began to vigorously

develop new software processes and document them through detailed guidelines and

associated templates and checklists. During the following year, the group created over 75

documents covering areas such as project planning, requirements management, release

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 121

planning, software coding standards, and quality assurance. Despite high productivity rates

and perceptions of progress in SPI, support for the SW-CMM initiative was withdrawn in

August 2001 due primarily to financial pressures. TelSoft decided to commit its resources

to imminent development rather than SPI.

Second SPI Initiative
Three years after the SEPG was disbanded, TelSoft engaged in collaboration with a group

of researchers (including the three authors) from a nearby University Innovation Center

(UIC). Our relationship to TelSoft was organized as a focused R&D collaboration [76]

with the dual purpose [77] of revitalizing SPI efforts at TelSoft and at the same time

contributing knowledge to the scientific community.

The overall improvement initiative was managed by two standing groups: the Software

Coordination Group (SCG) and the Problem Solving Team (PST). The SCG consisted of

TelSoft‟s President, Vice President of Software Development, Software Development

Manager, and Product Marketing Manager. The SCG met monthly to set strategic direction

for TelSoft‟s software products, monitor SPI initiatives, and manage the portfolio of

software projects. These meetings were planned and facilitated by UIC researchers. The

PST consisted of three highly regarded TelSoft engineers and managers and three UIC

researchers. The PST held responsibility for prioritizing improvement initiatives and

establishing improvement projects to focus on specific software processes.

After completing a thorough diagnosis of software practices (described in [78]), the PST

identified seven improvement areas: software vision management, project portfolio

management, software configuration management, customer relations, requirements

management, software quality assurance, and end-user interaction. The PST instituted two

action cycles to address these improvement areas. The first action cycle consisted of five

improvement projects focused on software coordination processes, quality assurance,

requirements management, configuration management, and customer relations. These

projects revised some legacy processes while generating additional software processes. It

was during these interactions that the PST became aware of two problems with process

management. First, the legacy processes varied greatly from actual software practices. This

mismatch occurred, in part, because TelSoft‟s software development group allowed client

demands rather than internal guidelines to drive their actions. Second, no procedures

existed for managing software processes. The PST decided to tackle these problems during

the second action cycle.

Table 2: SPI at TelSoft

 First SPI Initiative

(July 2000 – August 2001)

Second SPI Initiative

(October 2004 – December 2006)

Goal Achieve SW-CMM Level 3 to

comply with customer requirements

Solve perceived problems in

software development

Leadership Internal employees.

Limited support from external

Internal employees.

Ongoing facilitation through

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 122

consultant (2 day training on SW-

CMM).

collaboration with UIC.

Organization SEPG:

 1 full-time employee as team

leader

 3 standing team members

 4 team members that rotated out

every 3 months

PST, SCG, and focused

improvement projects.

Approach Initiatives organized as one big

project. Each initiative mainly

driven by individuals.

Initiatives organized into two action

cycles. Each initiative driven by a

team.

Sponsorship Supported by Vice President Supported by President and CEO

5.2 Application of SPR Model at TelSoft
In this section, we detail how the improvement organization worked together to execute

SPR at TelSoft during the second action cycle. The section concludes with specific lessons

learned.

Initiating
I.1 Assess need for SPR. TelSoft was a candidate for SPR because it had a large repository

of legacy processes and no procedures in place for software process management. While

some legacy processes created during the first SPI initiative were clearly obsolete, other

legacy processes were actively used by the software development group or needed

modification to become useful. The PST valued the knowledge contained within many of

the legacy processes; therefore, rather than throw away the legacy processes, the PST

decided to reengineer them.

I.2 Determine readiness for SPR. There were three indicators that TelSoft was ready to

tackle SPR: its reflective stance on prior SPI initiatives, demonstration of senior

management commitment to SPR, and adoption of software policies to guide

reengineering.

 Steps were taken to try to overcome weaknesses from the first SPI initiative. Rather

than focusing on achieving a specific SW-CMM level, the initiative was driven by

problems perceived to be important by key organizational stakeholders. The

improvement organization included a broad range of employees and used

experienced outside facilitators throughout the change process.

 TelSoft‟s upper management had committed to collaborate with the UIC for a two-

year period to effectively reengage in SPI. They had witnessed some success

during the first action cycle and were, therefore, enthusiastic about continuing.

Furthermore, they realized that as the SPI initiative continued, they would be

adding more software processes to the repository, potentially increasing the

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 123

problem of legacy processes. To address this problem, they decided to implement

systematic software process management.

 During the first action cycle, TelSoft had created software policies. These policies

were brief and enforceable, stating desired practices that the SPI program should

develop (see Table 3). The policies had been suggested by the improvement teams,

consolidated by the PST, debated by software development employees, and

approved by the SCG. Recognizing the dynamic nature of policies and priorities,

the SCG was reviewing the policies quarterly to assess whether modifications were

required.

I.3 Establish appropriate SPI organization. The PST established the SPR team and gave it

five months to place legacy processes under management control, revise the existing

process repository, and create a process management plan. Members of this cross-

functional team included the manager of the first SPI effort and the developer targeted to

be responsible for the new process management process.

Table 3: Software Policies at TelSoft

Area Policy

1. Professional Standards TelSoft will strive to operate based on the highest

professional standards and processes.

2. Customer Knowledge TelSoft will strive to understand and incorporate its

customers‟ business knowledge in our products.

3. Relationship

Management

TelSoft will maintain a proactive professional relationship to

its customers.

4. Two-phase Funding TelSoft will manage each development project with a two-

phase approach that separates requirement and development

activities.

5. Requirements First TelSoft will only engage resources to start design and

construction when TelSoft has a baseline of identifiable and

agreed upon requirements.

6. Change Request TelSoft will only engage resources to address requirement

change requests that are documented, agreed upon and

applied to the requirements baseline.

7. Communicate Status TelSoft will communicate status to its customers of all active

projects on a regular basis.

8. Quality Assurance

Approval

TelSoft will only deliver official releases of software to a

client with the written approval of Quality Assurance.

9. Release

Documentation

Each release of TelSoft software will include documentation

of all changes and new features since the previous release.

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 124

Team members were asked to work on SPR for no more than 4 hours every two weeks,

signaling a preference for pragmatic decision making over comprehensive consideration of

all options. Like all other improvement teams, the SPR team reported to the PST.

The initiating steps concluded at TelSoft with the three inputs to SPR process firmly in

place: 75 legacy processes, 9 software policies, and an improvement organization to guide

SPR consisting of the SPR team, the PST, and the SCG.

Diagnosing
D.1 Characterize legacy processes. Given many legacy processes but limited resources,

the SPR team selected an iterative approach to SPR. They would first characterize all the

legacy processes according to relevant attributes; they would then use those attributes to

select the legacy processes that would get reengineered first. Therefore, the SPR team

captured the following relevant attributes for each legacy process: documentation status,

current implementation status, desired implementation status, desired visibility for

customers, and associated software policies.

Reaching agreement on these attributes for each legacy process was not a straightforward,

simplistic process. The SPR team tried various approaches before falling into a method

that worked. At first, the SPR team asked a TelSoft employee who was also on the team to

do the assessment with minor assistance of two UIC researchers. Although it proved fairly

easy to reach agreement on the legacy processes that were obsolete, this group lacked the

authority and knowledge required to assign current and desired implementation status.

The second attempt at assigning attributes was designed to get more input from other

members of the SPR team. Each week, all members of the SPR team were assigned 4-6

legacy processes to assess; they could also add specific suggestions on how to improve the

documents. The responses were collected and any disagreements were discussed at the

SPR team meeting. This approach had the benefit of allowing a more careful review of the

processes and getting specific suggestions from a variety of stakeholders. However, it was

time intensive and the SPR team did not have a big picture view of TelSoft‟s software

development process.

To solve the challenges of lack of authority, tendency toward detail and thoroughness, too

much pressure on one person, and having the right people involved, the PST finally

decided they were better suited to make the assessments. Each member of the PST

assessed all processes independently. During a series of three meetings of about two hours

each, the PST then discussed and negotiated the assessment of all legacy processes. The

presence of the Vice President of Software Development and the Software Development

Manager made it easier to deal with the strategic questions of desired implementation.

D2. Assess process repository. TelSoft‟s process repository was assessed from the

viewpoint of two key stakeholders: the internal TelSoft employees and the external

customers. The existing repository was a convenient choice for TelSoft employees: it was

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 125

fully integrated with the system they used for email, scheduling meetings, and sharing

documents. The main problems were due to the volume of documents that existed in the

database and the haphazard way in which documents were organized. Employees

complained that relevant processes were difficult to find.

While employees suffered from information overload, external customers had the opposite

problem. They had no access to the process repository and had limited insight into

software development practices at TelSoft. This lack of information coupled with some

performance problems, led them to reduced confidence in the organization. The SPR team

found that giving customers access to key software processes would help TelSoft present a

more professional image for both current and future customers.

D.3 Diagnose process management practice. A detailed diagnosis had been conducted

prior to the first action cycle revealing the following problems with process management

practice:

 At TelSoft, there was no systematic process management group in place to approve

documents or manage the process repository. Any person within the software

development group had the authority to create process documents. These

documents were typically reviewed by members of the TelSoft management group

for informal approval before being placed in the LotusNotes repository.

 There were no written standards for process documents.

 Changes to software processes were not centrally managed. Once documents were

placed within the repository, the document‟s original author could make changes to

the document without notifying anyone.

 Several written processes had little impact on engineering practices. Many software

processes were neither read nor enforced. More likely, it was the case that

documents were written and then largely forgotten unless the management team

insisted upon conforming and monitored compliance.

Through these diagnosing activities, the PST and SPR team began to appreciate the

problems with legacy processes, process repository, and process management practice.

Establishing
E.1 Assign action status for managed processes. The PST assigned action status to each

process. The obsolete processes were immediately discarded. The processes with “needs

approval” status were assigned “Submit for approval” status and held until the process

management process had been defined. For the 19 managed processes with “needs

revision” status, the PST decided to reengineer the processes iteratively. In the first wave

of modifications, they assigned an action status of “redesign now” to the processes they

felt should be visible to customers; all other documents were assigned an action status of

“redesign later.” The second wave of modifications would focus on those processes where

the current and desired implementation statuses were not aligned (see Table 4)

www.manaraa.com

 126

Table 4: "Redesign Later" Processes with Misaligned Implementation Status

Current Implementation Status Desired Implementation Status Count

Discretionary Normally Used 1

Normally used Standardized 7

Not Used Discretionary 1

Not Used Normally used 2

Not Used Standardized 1

 Total 12

E.2 Redesign process repository. The main improvement for internal stakeholders was to reduce

the number of obsolete processes cluttering the existing repository. To increase external

stakeholders‟ visibility into TelSoft‟s processes, the SPR team decided to redesign the company‟s

website to fully describe the software policies, show selected software processes which support

these software policies, and described the SPI effort.

E.3 Outline process management plan. The SPR team created standards for templates and

processes. These standards would be used to assess whether processes could be marked as

“approved”. A process management plan was created that involved: making process management

a responsibility of the existing quality assurance group; adding a process monitoring and control

activity to the monthly PST meetings; maintaining the documentation, implementation, and

action status; and yearly assessment of how well policies were being implemented.

Acting
A.1 Reengineer legacy processes. The processes that were assigned status of “redesign now”

were modified and reviewed for conformance with standards before being approved.

A.2 Develop process repository. The website underwent several iterations to arrive at a design

which was easy to navigate and provided succinct and relevant information to external

stakeholders. The new updates were deployed on schedule by the October 2006 deadline.

A.3 Pilot process management plan. The process management plan went through several rounds

of internal review and debate before being approved by the PST. This activity ended with (1) a

pilot meeting of the PST in which the process management monitoring and control was executed,

(2) a transfer of responsibility for daily management of processes to the quality assurance group,

and (3) a workshop to announce the new process management processes to the entire software

development group

Leveraging
L.1 Evaluate achievements. TelSoft‟s SPR effort was designed to eliminate legacy processes,

update the process repository, and improve their process management discipline. As a result of

this process, 26 of the 75 legacy processes were considered useful for retaining (see Table 5 for

summary of managed processes).

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 127

Table 5: Summary of Management Processes at TelSoft

Documentation

Status

Current Implementation Status

Total
Not

used
Discretionary

Normally

used
Standardized

Needs revision 4 6 7 2 19

Needs approval 0 3 0 3 6

Approved 0 0 0 1 1

Totals 4 9 7 6 26

Specific lessons learned during this experience include:

1. SPR should consist of team members with sufficient authority and process knowledge to

evaluate documentation and implementation status. These statuses, particularly the desired

implementation status, drive SPR and should represent a commitment from TelSoft upper

management team to assign the required resources.

2. SPR should take advantage of frequent feedback from improvement teams and software

engineers in general. The SPR team at TelSoft had difficulties early on that were resolved

only when the PST actively asked questions and involved key stakeholders.

3. SPR should use agreed-upon policies to prioritize action planning. TelSoft had agreed to

policies prior to SPR; however, they had not yet prioritized those policies. As it became clear

that they could not revise all legacy processes at once, TelSoft used the policy mapping to

help determine which documents they should focus on first.

4. Publicizing policies and key processes demonstrated to TelSoft customers that a systematic

development approach is being followed; they created positive expectations to TelSoft‟s

focus on client relationships; and, they reinforced TelSoft‟s commitment to long-term,

continuous improvement of its software practices.

5. Developing and piloting the plan for software process management made the PST realize

what is required to sustain and institutionalize a process discipline at TelSoft.

L.2 Determine whether to exit. The PST decided to exit from SPR as the process repository had

been sufficiently revised to meet stakeholder needs. The quality assurance team had practiced

checking processes against standards. The PST had created a baseline of the documentation,

implementation, and action statuses for all software processes. They were committed to

reviewing this status on a monthly basis.

6. Conclusions and Future work
SPI has become one of the major approaches to improve performances within the software

industry. While there are many success stories presented in the literature, SPI is not without

complications. Software organizations involved in SPI might decide to focus resources on other

business issues, or they might develop a portfolio of processes without having a proper process

management discipline in place. As a result, these organizations will increasingly face legacy

software processes that are inconsistent with current software practices and policies. This

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 128

research has addressed this challenge by developing a systematic and practical model for

transforming legacy software processes to managed processes. The presented SPR model uses

software policies to guide the reengineering effort. The feasibility of the model is demonstrated

based upon an industrial case study of a small software organization, TelSoft. The model had

several key benefits: it engaged key stakeholders in TelSoft’s improvement efforts; it effectively

communicated the organization‟s software practices; and, it created a solid platform for

institutionalizing a process management discipline. As other software organizations engage in

SPR, their situation will be different from the one at TelSoft. It is therefore important they

carefully consider the context for SPR (SPR Principle 1) to help adapt the proposed model to

their specific needs. Future research is needed to investigate the suitability of the model within

other software organizations as well as to analyze its long-term effectiveness.

The presented research has also provided conceptual clarity regarding the problem of legacy

software processes and the need for software process reengineering. A key point is that

organizations‟ history with SPI impacts their ability to move forward. This is especially true for

those that follow SPI approaches with a heavy focus on generic, documented processes that are

tailored to individual projects. When these software organizations fail to institute proper process

management practices or when they decide to reinvest in SPI, they may likely be confronted with

a considerable portfolio of legacy processes. Future research needs to further appreciate this

problem and reconsider how software organizations can effectively develop and implement

process management solutions.

Finally, this research integrates lessons from business process change, SPI, and legacy software

systems to provide principles (as described in Section 3) for SPR. Practitioners can use these

principles as basis for adapting the proposed SPR model to their particular context and needs. In

addition, future research can further explore how such broader knowledge from related

disciplines can be used to further develop knowledge and practices within SPI.

Acknowledgment
The authors wish to thank the employees and management at TelSoft and [name withheld during

review process]. This work was supported in part by grants from [name withheld during review

process], TelSoft, and United States Department of Education.

References
Adler, P. S., B. Goldoftas, et al. (1999). "Flexibility versus Efficiency? A Case Study of Model

Changeovers in the Toyota Production System." Organization Science 10(1): 43-68.
Adler, P. S., F. McGarry, et al. (2005). "Enabling process discipline: lessons from the journey to

CMM level 5." MIS Quarterly Executive 4(1): 215-226.
Agile Alliance. (2001). "Manifesto for Agile Software Development." Retrieved May, 2006,

from http://www.agilemanifesto.org/.
Argyris, C. (1985). Action Science. San Francisco, Jossey-Bass.
Avison, D., R. Baskerville, et al. (2001). "Controlling action research projects." Information

Technology & People 14(1): 28-45.
Avison, D., F. Lau, et al. (1999). "Action Research." Communications of the ACM 42(1): 94-97.
Avison, D. and T. Wood-Harper (1990). Multiview: an exploration in information systems

development. New York, McGraw-Hill.
Baker, S. (2005). Formalizing agility: an agile organization's journey toward CMMI

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 129

accreditation. Agile Conference.
Barley, S. R. and G. Kunda (2001). "Bringing Work Back In." Organization Science 12(1): 76-95.
Baskerville, R. and T. Wood-Harper (1996). "A Critical Perspective on Action Research as a

Method for Information Systems Research." Journal of Information Technology 11: 235-
246.

Baskerville, R. and T. Wood-Harper (1998). "Diversity in information systems action research
methods." European Journal of Information Systems 7(2): 90-107.

Baskerville, R. L. (1999). "Investigating information systems with action research."
Communications of the AIS 2(3es).

Baum, J. A. C., S. X. Li, et al. (2000). "Making the Next Move: How Experiential and Vicarious
Learning Shape the Locations of Chains' Acquisitions." Administrative Science Quarterly
45(4): 766-801.

Beck, K. (1999). Extreme Programming Explained: Embrace Change. Reading, MA, Addison-
Wesley.

Beecham, S., T. Hall, et al. (2005). "Defining a Requirements Process Improvement Model."
Software Quality Journal 13(3): 247-279.

Benner, M. J. and M. Tushman (2002). "Process Management and Technological Innovation: A
Longitudinal Study of the Photography and Paint Industries." Administrative Science
Quarterly 47(4): 676-709.

Benner, M. J. and M. L. Tushman (2003). "Exploitation, Exploration, and Process management:
The productivity Dilemma Revisited." Academy of Management Journal 28(2): 238-256.

Birkinshaw, J. and C. Gibson (2004). "Building ambidexterity into an organization." Sloan
Management Review 45(4): 47-55.

Boehm, B. W. (2002). "Get ready for agile methods, with care." Computer 35(1): 64-69.
Boehm, B. W. and R. Turner (2004). Balancing agility and discipline: a guide for the perplexed.

Boston, Addison-Wesley.
Checkland, P. and S. Holwell (1998). "Action research: its nature and validity." Systemic

Practice and Action Research 11(1): 9-21.
Clark, K. B. and S. C. Wheelwright (1992). "Organizing and Leading

„Heavyweight‟Development Teams." California Management Review 34(3): 9-28.
CMMI Product Team (2002). CMMI for Systems Engineering/Software Engineering/Integrated

Product and Process Development/Supplier Sourcing, Software Engineering Institute.
Cockburn, A. (2000). Writing Effective Use Cases. Reading, MA, Addison-Wesley.
Collins, J. C. and J. I. Porras (1994). Built to Last: Successful Habits of Visionary Companies.

New York, HarperCollins Publishers.
Cook, S. D. N. and J. S. Brown (1999). "Bridging epistemologies: the generative dance between

organizational knowledge and organizational knowing." Organization Science 10(4): 381-
400.

Cunningham, J. B. (1993). Action research and organizational development. Westport, CT,
Praeger.

Curtis, B., W. E. Hefley, et al. (2002). People Capability Maturity Model: Guidelines for
Improving the Workforce. Boston, Addison-Wesley.

Davison, R. M., M. G. Martinsons, et al. (2004). "Principles of canonical action research."
Information Systems Journal 14(1): 65-86.

De Reyck, B., Y. Grushka-Cockayne, et al. (2005). "The impact of project portfolio management
on information technology projects." International Journal of Project Management 23(7):
524-537.

Deming, W. E. (1986). Out of Crisis. Cambridge, MA, MIT Center of Advanced Engineering
Study.

Duncan, R. B. (1976). "The Ambidextrous Organization: Designing Dual Structures for
Innovation." Kilmann, RH Pondy, LR, and DP Slevin (eds.). The Management of
Organization Design, I, New York: Elsevier North-Holland: 167-188.

Dyba, T. (2005). "An Empirical Investigation of the Key Factors for Success in Software Process
Improvement." IEEE Transactions on Software Engineering 31(5): 410.

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 130

El Emam, K. and A. Birk (2000). "Validating the ISO/IEC 15504 measure of software
requirements analysis process capability." IEEE Transactions on Software Engineering
26(6): 541.

Floyd, S. and P. Lane (2000). "Strategizing throughout the organization: Managing role conflict
in strategic renewal." Academy of Management Review 25: 154-177.

Fuggetta, A. (2001). Software Process: A Roadmap. Software Process Improvement. R. Hunter
and R. H. Thayer. Los Alamitos, CA, IEEE Computer Society: 559-566.

Ghoshal, S. and C. A. Bartlett (1994). "Linking organizational context and managerial action: the
dimensions of quality of management." Strategic Management Journal 15(Summer): 91-
112.

Gibson, C. and J. Birkinshaw (2004). "The Antecedents, consequences, and mediating role of
organizational amidexterity." Academy of Management Journal 47(2): 209-226.

Goldenson, D. R. and J. D. Herbsleb (1995). After the appraisal: a systematic survey of process
improvement, its benefits, and factors that influence success. Pittsburgh, PA, Software
Engineering Institute.

Gregor, S. (2006). "The Nature of Theory in Information Systems." MIS Quarterly 30(3): 611-
642.

Gupta, A., K. Smith, et al. (2006). "The Interplay between Exploration and Exploitation."
Academy of Management Journal 49(4): 693-706.

Haeckel, S. (1995). "Adaptive enterprise design: the sense-and-respond model." Planning
Review 23(3): 6-13, 42.

Haeckel, S. (1999). Adaptive Enterprise: Creating and Leading Sense-and-Respond
Organizations. Boston, MA, Harvard Business School Press.

He, Z.-L. and P.-K. Wong (2004). "Exploration vs. Exploitation: An empirical test of the
ambidexterity hypothesis." Organization Science 15(4): 481-494.

Hevner, A. R., S. T. March, et al. (2004). "Design Science in Information Systems Research."
MIS Quarterly 28(1): 75-105.

Highsmith, J. (2000). Adaptive Software Development: A Collaborative Approach to Managing
Complex Systems. New York, NY, Dorset House Publishing.

Highsmith, J. and A. Cockburn (2001). "Agile Software Development: The Business of
Innovation." Computer 34(9): 120-127.

Hobday, M. (2000). "The project-based organisation: an ideal form for managing complex
products and systems." Research Policy 29(7-8): 871-893.

Horvat, R. V., I. Rozman, et al. (2000). "Managing the complexity of SPI in small companies."
Software Process: Improvement and Practice 5(1): 45-54.

Humphrey, W. S. (1989). Managing the Software Process. Boston, MA, Addison-Wesley.
Iversen, J., L. Mathiassen, et al. (2004). "Managing risk in software process improvement: an

action research approach." MIS Quarterly 28(3): 395-433.
Iversen, J., P. A. Nielsen, et al. (2002). Problem Diagnosis in SPI. Improving Software

Organizations: From Principles to Practice. L. Mathiassen, J. Pries-Heje and O.
Ngwenyama. New York, Addison-Wesley.

Jansen, J. J. P., F. A. J. van Den Bosch, et al. (2005). "Exploratory innovation, exploitative
innovation, and ambidexterity: The impact of environmental and organizational
antecedents." Schmalenbach Business Review 57: 351-363.

Kautz, K. H., H. W. Hansen, et al. (2000). Applying and adjusting a software process
improvement model in practice: The use of the IDEAL model in a small software
enterprise. International Conference on Software Engineering, Limerick, Ireland.

Kock, N. (1997). "Negotiating mutually satisfying IS action research topics with organizations:
an analysis of Rapoport's initiative dilemma." Journal of Workplace Learning 9(7): 253-
62.

Krasner, H., J. Terrel, et al. (1992). "Lessons learned from a software process modeling system."
Communications of the ACM 35(9): 91-100.

Kuvaja, P. and A. Bicego (1994). "BOOTSTRAP - a European Assessment Methodology."
Software Quality Journal 3(3): 117-127.

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 131

Langley, A. (1999). "Strategies for theorizing from process data." Academy of Management
Review 24(4): 691-710.

Lee, G., W. DeLone, et al. (2006). "Ambidextrous coping strategies in globally distributed
software development projects." Communications of the ACM 49(10): 35-40.

Lee, G., W. DeLone, et al. (2007). "Ambidexterity and Global IS Project Success: A Theoretical
Model." System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International
Conference on: 44-44.

Lincoln, Y. and E. Guba (1985). Naturalistic Inquiry. Newbury, CA, Sage.
Lindgren, R., O. Henfridsson, et al. (2004). "Design Principles for Competence Management

Systems: A Synthesis of an Action Research Study." MIS Quarterly 28(3): 435–472.
Lubatkin, M. H., Z. Simsek, et al. (2006). "Ambidexterity and Performance in Small-to Medium-

Sized Firms: The Pivotal Role of Top Management Team Behavioral Integration." Journal
of Management 32(5): 646-672.

Lyytinen, K. (1988). "Stakeholders, IS failures and soft system methodology: an assessment."
Journal of Applied Systems Analysis 15: 61-81.

March, J. G. (1991). "Exploration and Exploitation in Organizational Learning." Organization
Science 2(1): 71-87.

Markowitz, H. (1952). "Portfolio Selection." The Journal of Finance 7(1): 77-91.
Mårtensson, P. and A. S. Lee (2004). "Dialogical Action Research at Omega Corporation." MIS

Quarterly 28(3): 507-536.
Mason, J. (2002). Qualitative Researching. London, Sage.
Mathiassen, L. (2002). "Collaborative practice research." Information Technology & People

15(4): 321-345.
Mathiassen, L., J. Pries-Heje, et al. (2002). Improving Software Organizations: From Principles

to Practice. Boston, MA, Addison-Wesley.
Mathiassen, L. and A. M. Vainio (2007). "Dynamic capabilities in small software firms: a sense-

and-respond approach." IEEE Transactions on Engineering Management 54.
McFarlan, F. W. (1981). "Portfolio Approach to Information Systems." Harvard Business Review

59(5): 142-150.
McFeeley, B. (1996). IDEAL: A user's guide for software process improvement. Pittsburgh, PA,

Software Engineering Institute.
McKay, J. and P. Marshall (2001). "The dual imperatives of action research." Information

Technology & People 14(1): 46-59.
Miles, M. B. and A. M. Huberman (1994). Qualitative Data Analysis: an expanded sourcebook.

Thousand Oaks, Sage Publications.
Mingers, J. (2001). "Combining IS Research Methods: Towards a Pluralist Methodology."

Information Systems Research 12(3): 240-259.
Mingers, J. and A. Gill (1997). Multimethodology: The theory and practice of combining

management science methodologies. Chichester, John Wiley & Sons.
Napier, N. P., J. Kim, et al. (under review). "Software Process Reengineering: A Model and Its

application to an industrial case study." IEEE Transactions on Software Engineering.
Napier, N. P., L. Mathiassen, et al. (2006). Negotiating Response-ability and Repeat-ability in

Requirements Engineering. International Conference on Information Systems,
Milwaukee, Wisconsin.

Napier, N. P., L. Mathiassen, et al. (2006). Perceptions and Processes in assessing software
requirements practices. Proceedings of the Twelfth Americas Conference on Information
Systems, Acapulco, Mexico.

Napier, N. P., L. Mathiassen, et al. (2006). Perceptions and Processes in assessing software
requirements practices. Proceedings of the Twelfth Americas Conference on Information
Systems, Acapulco, Mexico.

Napier, N. P., L. Mathiassen, et al. (under review). "Becoming Ambidexterous: A Contextualist
Inquiry into a Small Software Firm." Organization Science.

Nielsen, P. A. and J. Pries-Heje (2002). A Framework for selecting an assessment strategy.
Improving software organizations: from principles to practice. L. Mathiassen, J. Pries-

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 132

Heje and O. Ngwenyama, Addison-Wesley.
O'Reilly III, C. A. and M. Tushman (2004). "The Ambidextrous Organization." Harvard Business

Review 82(4): 74-81.
Orlikowski, W. and J. J. Baroudi (1991). "Studying information technology in organizations:

research approaches and assumptions." Information Systems Research 2(1): 1-28.
Overby, E., A. Bharadwaj, et al. (2006). "Enterprise agility and the enabling role of information

technology." European Journal of Information Systems 15(2): 120-131.
Paulk, M. (2001). "Extreme Programming from a CMM perspective." IEEE Software 18(6): 19-

26.
Paulk, M., B. Curtis, et al. (1993). Capability Maturity Model for Software (Version 1.1),

Carnegie Mellon University.
Paulk, M., B. Curtis, et al. (1993). Capability Maturity Model for Software, Version 1.1.

Pittsburgh, PA, Software Engineering Institute.
Paulk, M., C. V. Weber, et al., Eds. (1995). The Capability maturity model: guidelines for

improving the software process. SEI Series in Software Engineering. Boston, Addison-
Wesley.

Pettigrew, A. M. (1985). Contextualist Research: A Natural Way to Link Theory and Practice.
Doing Research That is Useful for Theory and Practice. E. E. Lawler. San Francisco,
Jossey-Bass.

Pettigrew, A. M. (1987). "Context and Action in the Transformation of the Firm." Journal of
Management Studies 24(6): 649-670.

Pettigrew, A. M. (1990). "Longitudinal field research on change: theory and practice."
Organization Science 1(3): 267-.

Pouloudi, A. and E. Whitley (1997). "Stakeholder identification in inter-organizational systems:
gaining insights for drug use management systems." European Journal of Information
Systems 6(1): 1.

Ramesh, B., J. Pries-Heje, et al. (2002). Internet software engineering: a different class of
processes. Annals of software engineering, Kluwer Academic Publishers. 14: 169-195.

Rapoport, R. (1970). "Three Dilemmas in Action Research." Human Relations 23(6): 499-513.
Ravichandran, T. and A. Rai "Quality management in systems development: An organizational

system perspective." MIS Quarterly 24(3): 381.
Rising, L. and N. S. Janoff (2000). "The Scrum software development process for small teams."

Software, IEEE 17(4): 26-32.
Rout, T. P. (1995). "SPICE: A Framework for Software Process Assessment." Software Process:

Improvement and Practice 1(1): 57-66.
Salo, O. and P. Abrahamsson (2005). Integrating agile software development and software

process improvement: a longitudinal case study. International Symposium on Empirical
Software Engineering.

Schwaber, K. and M. Beedle (2001). Agile Software Development with Scrum. Upper Saddle
River, Prentice Hall.

Smith, W. K. and M. L. Tushman (2005). "Managing Strategic Contradictions: A Top
Management Model for Managing Innovation Streams." Organization Science 16(5):
522-536.

Software Engineering Institute (2006). Improving Processes in Small Settings (IPSS): A White
Paper. Pittsburgh, PA, Carnegie Mellon University.

Sommerville, I. and J. Ransom (2005). "An empirical study of industrial requirements
engineering process assessment and improvement." ACM Transactions on Software
Engineering and Methodology 14(1): 85-117.

Sommerville, I. and P. Sawyer (1997). Requirements Engineering: A Good Practice Guide. New
York, NY, John Wiley & Sons.

Susman, G. and R. Evered (1978). "An assessment of the scientific merits of action research."
Administrative Science Quarterly 23(4): 582-603.

The Standish Group International. (2004). "2004 Third Quarter Research Report." from URL
http://standishgroup.com/sample_research/PDFpages/q3-spotlight.pdf.

www.manaraa.com

Paper 3: Managing Legacy and Current Processes 133

Turk, D., R. France, et al. (2005). "Assumptions underlying agile software-development
processes." Journal of Database Management 16(4): 62-87.

Tushman, M. and C. A. O'Reilly III (1996). "Ambidextrous organizations: Managing
Evolutionary and revolutionary change." California Management Review 38(4): 8-30.

Van Aken, J. E. (2004). "Management research based on the paradigm of the design sciences:
The quest for field-tested and grounded technological rules." Journal of Management
Studies 41(2): 219-246.

Van de Ven, A. and M. Poole (1995). "Explaining development and change in organizations."
Academy of Management Review 20(3): 510-540.

Vidgen, R. (1997). "Stakeholders, soft systems and technology: separation and mediation in the
analysis of information system requirements." Information Systems Journal 7(1): 21-46.

Vinekar, V., C. W. Slinkman, et al. (2006). "Can agile and traditional systems development
approaches coexist? An ambidextrous view." Information Systems Management 23(3):
31-42.

Weitzman, E. A. and M. B. Miles (1995). Computer Programs for Qualitative Data Analysis.
Thousand Oaks, CA, Sage.

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge,
Cambridge University Press.

Yin, R. K. (2003). Case Study Research: Design and Methods. Thousand Oaks, Sage.
Zbaracki, M. J. (1998). "The rhetoric and reality of total quality management." Administrative

Science Quarterly 43(3): 602-636.

www.manaraa.com

 134

Paper 4: Becoming Ambidextrous

Title: Becoming Ambidextrous: A Contextualist Inquiry

into a Small Software Firm

This paper is coauthored by Nannette Napier, Lars Mathiassen, and

Dan Robey

This version of the paper is submitted to Organization Science,

Special Issue on Ambidextrous Organizations,

www.manaraa.com

Paper 4: Becoming Ambidextrous 135

Abstract
Ambidextrous organizations are argued to achieve high performance by simultaneously aligning

their activities with existing customers while adapting to emerging market opportunities.

Distinctions have been made in prior literature between structural ambidexterity, which separates

alignment and adaptability into distinct activities, and contextual ambidexterity, which integrates

both alignment and adaptability into the organization‟s systems, processes, and beliefs. For small

firms with limited resources, contextual ambidexterity is an attractive proposition because it

limits the complexity of formal organization structure. However, there is limited actionable

advice on how managers can shape the organizational context to develop ambidextrous

capability. On this backdrop, we report a two-year action research study of one small software

firm‟s attempt to innovate project portfolio management. Drawing upon Pettigrew‟s guidance for

contextualist inquiry, we show how changing degrees of alignment and adaptability interacted

with the performance management and social support context over time. Based on these

experiences, we propose a model for becoming ambidextrous through the processes of

diagnosing, visioning, intervening, and practicing.

Introduction
To improve organizational performance, managers must often balance concerns which at times

may seem contradictory. For instance, managers must decide where to invest resources to

enhance performance and whether such investments should focus on aligning with existing

customers in mature markets or on adapting to new customers in emerging markets. To reap the

benefits of both alignment and adaptability, organizations have been advised to strive for

ambidexterity – the paradoxical ability to pursue simultaneously contradictory capabilities such

as exploration-exploitation (Tushman and O'Reilly III 1996), alignment-adaptability (Gibson and

Birkinshaw 2004), and flexibility-efficiency (Adler, Goldoftas et al. 1999). Ambidextrous

organizations compete by optimizing efficiency, cost, and incremental innovation while also

exhibiting flexibility, speed, and radical innovation (Tushman and O'Reilly III 1996). Moreover,

studies have begun to provide empirical support for a positive relationship between

ambidexterity and organizational performance (Gibson and Birkinshaw 2004; He and Wong

2004).

Despite the anticipated benefits, achieving ambidexterity is by no means straightforward. Each of

the contradictory capabilities requires different and often incongruent systems, processes, and

beliefs, thereby creating conflicts and dilemmas that are challenging to resolve (Tushman and

O'Reilly III 1996; Floyd and Lane 2000; Gibson and Birkinshaw 2004). How, then, can

managers design ambidextrous organizations? Two general approaches have been suggested:

structural and contextual ambidexterity. With structural ambidexterity, managers create separate

business units within the organization which specialize in one required capability, and the top

management team bears responsibility for coordinating contributions of the two units to achieve

ambidexterity at the organizational level (Gibson and Birkinshaw 2004). With contextual

ambidexterity, the responsibility for achieving ambidexterity is shared by members within a

single business unit. To create a high performing business unit, the top management team is

advised to create an organizational context which facilitates both alignment and adaptability

through appropriate performance management and social support (Gibson and Birkinshaw 2004).

www.manaraa.com

Paper 4: Becoming Ambidextrous 136

While many firms could benefit from being ambidextrous, they may lack the resources or

stability required for creating dual structures as advised by structural ambidexterity. For small

firms that operate in dynamic environments, the concept of contextual ambidexterity therefore

seems most feasible (Lubatkin, Simsek et al. 2006). For these firms, the challenge then becomes

one of increasing alignment and adaptability practices while simultaneously shaping the

organizational context to support these practices. Although prior research on contextual

ambidexterity has demonstrated that an organizational context with appropriate performance

management and social support facilitates alignment and adaptability (Gibson and Birkinshaw

2004), the practical questions related to becoming ambidextrous have not been addressed.

Specifically, how can organizations develop and engage in ambidextrous practices and create

and sustain organizational contexts that facilitate such practices? What challenges will managers

face during such transformation processes and how can they be addressed? How long does it take

to become ambidextrous, and are there specific shortcuts which enable this process to go more

quickly?

Our focus is therefore on contextual ambidexterity and our objective is to explore how

organizations can develop managerial practices and organizational contexts as they strive to

become ambidextrous. The research is framed as a two-year contextualist inquiry (Pettigrew

1985, 1987) based on action research (Susman and Evered 1978; McKay and Marshall 2001;

Mathiassen 2002) into practices at TelSoft, a small software firm with a well-established

customer base and a need to innovate its processes and products. Adopting action research

principles allows us to get deep and first-hand insight into how contextual ambidexterity was

approached and developed over time. Pettigrew‟s contextualist inquiry helps us to conceptualize

and explore how content, context, and processes interacted and shaped each other over the two-

year period. Our focus is on project portfolio management, i.e., the systematic management of

the company‟s projects in order to decide which projects should be added or removed as well as

the relative priority of projects within that portfolio (Markowitz 1952; McFarlan 1981; De

Reyck, Grushka-Cockayne et al. 2005). In software firms that are project-based organizations,

project portfolio management is a core management activity requiring ongoing assessment of

existing projects and new business opportunities (Clark and Wheelwright 1992; Hobday 2000).

TelSoft is representative of small software firms. It is oriented toward known customers in a

niche market; it has high reliance on committed employees who perform many roles within the

organization; and it has few resources devoted to innovation (Horvat, Rozman et al. 2000).

Although not considered a market leader, TelSoft has a reliable customer base consisting of two

large customers that drive innovation to their core software products and several hundred smaller

customers that use TelSoft‟s standardized geographic mapping software. TelSoft management

acknowledges that the company‟s biggest strength is its people: experienced software engineers

with deep knowledge of its products, systems analysts with strong customer relationships, and

managers willing to adapt quickly to customer requests. Due to recent financial pressures,

TelSoft was forced to downsize its workforce, causing it to lose valuable customer and technical

expertise, and also requiring that employees adopt additional roles and responsibilities.

Struggling to survive in a competitive environment, TelSoft frequently neglected innovation and

adaptation, and instead emphasized known customers, products, and services.

www.manaraa.com

Paper 4: Becoming Ambidextrous 137

Software firms like TelSoft represent an ideal setting for studying contextual ambidexterity for

three main reasons. First, software firms operate in competitive business environments

characterized by frequent customer changes, rapid technological advances, and time-to-market

pressures (Ramesh, Pries-Heje et al. 2002; Mathiassen and Vainio 2007). They must adapt

quickly to such environmental changes to ensure customer satisfaction and technology

acceptance. Second, software firms have a track record of poor performance: less than half of

software development projects result in a quality software product that is delivered on time and

within budget (The Standish Group International 2004). Consequently, software managers need

to ensure that employees are working toward the common goal of developing software that meets

or exceeds stakeholder requirements. Third, software firms face the need to integrate seemingly

opposing development synergies. On the one hand, software innovation strategies need to

emphasize the predictable “repeat-ability” of development processes while, on the other hand,

strategies need to emphasize agility and “response-ability” (Boehm 2002; Napier, Mathiassen et

al. 2006). While in the past there have been staunch advocates for one strategy over the other,

recently there has been a renewed interest in how software firms can achieve the benefits of both

approaches simultaneously (Holmberg and Mathiassen 2001; Boehm and Turner 2004; Salo and

Abrahamsson 2005; Lee, DeLone et al. 2006; Napier, Mathiassen et al. 2006; Vinekar, Slinkman

et al. 2006; Lee, DeLone et al. 2007). The integration of opposing capabilities would, in effect,

require software firms to become ambidextrous.

This paper uses the TelSoft case as a basis for developing insights on how organizations develop

managerial practices and organizational contexts as they strive to become ambidextrous. In the

next section, we review the literature on contextual ambidexterity, and we introduce contextual

inquiry as the analytical lens adopted in this study. The third section describes the research

approach used to study TelSoft. The fourth section offers a detailed account of how TelSoft

changed its project portfolio management capabilities. The fifth section discusses key insights

from examining the changes in process, context, and content. The final section concludes the

paper with suggestions for future research and practical guidance for managers.

Theoretical Background

Contextual Ambidexterity
Contextual ambidexterity requires simultaneous success at both alignment – the capacity of

employees within the business unit to work toward common goal, and adaptability – the capacity

of the business unit to change quickly in response to dynamic market conditions (Gibson and

Birkinshaw 2004). With contextual ambidexterity, responsibility is shared among individual

employees within a specific business unit. This perspective recognizes that the day-to-day

activities of individual employees shape and reflect ambidexterity. Therefore, the top

management team is charged with creating an organizational context that facilitates

ambidextrous practices.

Following Ghoshal and Bartlett (1994), Gibson and Birkinshaw (2004) identify two salient

aspects of the organizational context that can be manipulated to increase alignment and

adaptability: performance management and social support. The performance management

context represents systems, processes, and beliefs related to meeting performance objectives set

by the organization‟s management (Gibson and Birkinshaw 2004). Discipline is an attribute that

encourages people to voluntarily meet those objectives whereas stretch is an attribute that

www.manaraa.com

Paper 4: Becoming Ambidextrous 138

encourages people to strive for even more ambitious goals (Ghoshal and Bartlett 1994). The

social support context represents systems, processes, and beliefs associated with member

relationships (Gibson and Birkinshaw 2004). Trust is an attribute of the organizational context

that encourages people to rely on one another whereas support is an attribute that empowers

people to lend assistance to others (Ghoshal and Bartlett 1994).

With respect to software project portfolio management, discipline can be exhibited by

consistently completing projects that meet stakeholder requirements on time and within budget.

Stretch encourages project teams to focus and work hard to achieve goals that will add value to

customers or open opportunities for new business. However, where stretch is not balanced with

discipline, project-based organizations can experience problems. Designers and engineers can

fall into the trap of adding unnecessary functionality (i.e., feature creep), and project managers

can allow the scope of projects to expand to the point that projects are no longer profitable (i.e.,

scope creep). Beyond individual projects, discipline can be exhibited by ensuring that the

existing project portfolio is well managed, resources are appropriately distributed, and under-

performing projects are brought back on track or terminated. On this level, stretch is focused on

exploring new technology or market options and making decisions to alter the existing project

portfolio more strongly towards innovation. Again, the challenge for management is to balance

discipline and stretch.

Successful project portfolio management also requires strong social support. For instance, it is

well established that software projects depend heavily on the level of trust between designers and

managers on the one hand and between customers and future users on the other (Sabherwal

1999). Weinberg suggests that the essence of managing software teams is to create an

environment in which designers and engineers become empowered (Weinberg 1986). Best

practices have evolved in software firms that require managers to lend expert assistance across

project boundaries, e.g., quality assurance through peer-to-peer reviews (Weinberg and

Freedman 1982).

Managers in organizations with low alignment and adaptability may seek actionable advice on

shaping the organizational context to become ambidextrous. However, thus far research has

mainly investigated the antecedents of ambidexterity and the impact of ambidexterity on

performance without considering in detail how ambidexterity is developed (Gibson and

Birkinshaw 2004; He and Wong 2004). Researchers typically use interviews and surveys to

generate snapshot measures of ambidexterity and performance. These studies do not provide

insights into how ambidexterity develops within an organization over time or what work

activities and practices are entailed (Barley and Kunda 2001). By contrast, collecting and

analyzing longitudinal, qualitative data can provide insights into how and why people in

organizations act and interact over time (Langley 1999).

The process of building contextual ambidexterity is described as “complex, causally ambiguous,

widely dispersed, and quite time-consuming to develop” (Gibson and Birkinshaw 2004, p. 209-

210). Through their reports of case studies with multinational organizations, Birkinshaw and

Gibson (2004) provide some general lessons on where and how organizations can start

developing ambidextrous capabilities: diagnose the organizational context; change key aspects of

the context; ensure communication about ambidexterity throughout the organization; consider

www.manaraa.com

Paper 4: Becoming Ambidextrous 139

contextual and structural ambidexterity; and empower employees throughout the organization to

participate. While these lessons serve as a starting point for understanding how to develop

ambidexterity, much more is needed to understand how context and managerial practices interact

over time and shape each other as organizations strive to become ambidextrous. As we found no

empirical studies that describe these processes, we decided to investigate the process of

becoming ambidextrous at TelSoft.

Contextual Inquiry
We adopt Pettigrew‟s (1985; 1987) contextualist inquiry framework to investigate the process of

becoming ambidextrous. Contextualist inquiry is concerned with understanding how

transformation efforts unfold in particular organizational settings focusing on the interactions

between content, context, and process (see Figure 1). Content refers to the areas being

transformed; in this case we focus on managerial practices at TelSoft specifically related to

project portfolio management. Context refers to the environment in which the organization

operates as well as the systems, processes, and beliefs within the organization through which

ideas for change have to proceed. Focusing here on contextual ambidexterity, we are particularly

interested in how the performance management and social support elements of the context shape

and are shaped by the process of becoming ambidextrous. Finally, process refers to the actions

and interactions between various interested parties as they attempt to transform practices. In our

case, we focus on the actions and interactions related to building alignment and adaptability

within TelSoft.

Contextualist inquiry provides a general framing of the study that is well aligned with our focus

on building contextual ambidexterity. In addition to the conceptual distinctions between content,

context, and process, contextual inquiry combines a process orientation with multiple levels of

analysis (Pettigrew 1985, 1987). Within the process orientation, the emphasis is on the

interconnectedness of phenomena in historical, present, and future time. In our case, we focus on

how past events at TelSoft shaped its attempts to build ambidextrous capability and how these

events created a basis for moving forward. At different levels of analysis, contextual inquiry

draws attention to individuals, groups, the organization at large, and the organization‟s

environment. At TelSoft we focus on how individuals engage in project portfolio management,

we study how groups of managers interact to become ambidextrous, and we also focus on the

wider context of the organization and its interactions with existing and potential customers.

Research Context and Methods

Research Context
TelSoft, a privately held company founded in 1971, customizes geographic information systems

(GIS) software for the telecommunications and utility industries. A permanent business unit with

approximately 50 members was the focus of our study. For most of its history, TelSoft’s client

base was dominated by two long-standing, large customers referred to by managers as the

“bookends” which kept the company from falling. Advances to software products were driven by

change requests from these existing customers. Despite awareness of technological changes in

the marketplace, TelSoft invested very little in upgrading its software. For instance, even as

Microsoft products became the standard for developing Windows-based software applications,

software engineers at TelSoft used an obsolete technology no longer supported by its vendor.

www.manaraa.com

Paper 4: Becoming Ambidextrous 140

Although the underlying technological standard of TelSoft‟s main GIS product was gradually

being replaced, TelSoft had no plans to comply with new standards.

Prior attempts at radical innovation had gone poorly for TelSoft. In the late 1990s, TelSoft sensed

that the introduction of spatial databases could revolutionize their GIS products. After years of

investment, however, the company‟s CEO chose to terminate the project due to missed

deadlines, inadequate functionality, and limited market success. From that point on, management

was wary of developing new practices and pursuing new markets and was ordered by the CEO to

halt all “speculative development” until further notice.

Action Research
At the time our study began in 2004, TelSoft was experiencing severe issues with their main

customers: software releases were frequently shipped late, ran over budget, and contained

deviations from agreed upon requirements. These issues prompted the management team to

focus on innovation, and thus began a two-year action research project initiated in October 2004

by mutual agreement between TelSoft and the University Innovation Center (UIC). UIC is a

multi-disciplinary research unit within the business school which collaborates closely with

industry partners to study end-to-end business process innovation. The first two authors are part

of the research group at UIC. The first author had previously been employed at TelSoft.

McKay and Marshall (2001) conceptualize action research as containing two concurrent learning

cycles. The problem solving cycle addresses the practical concerns of the industry partner while

the research cycle addresses the quest for scientific knowledge by the researchers. The challenge

for action researchers is to simultaneously navigate both inquiry cycles as well as their

interdependencies while attending to potential ethical, initiative, and goal dilemmas (Rapoport

1970). Action research can generate rich data using a mixture of research methods such as

participant observation, interviews, document analysis, and surveys; thus supporting research

that is both rigorous and relevant. Such characteristics make action research an excellent

candidate for studying longitudinal organizational change processes (Pettigrew 1990). There are

many forms of action research (Baskerville and Wood-Harper 1998), including canonical action

research (Susman and Evered 1978; Davison, Martinsons et al. 2004), action science (Argyris

1985), and soft systems methodology (Checkland 1981, 1990).

This study is based upon collaborative practice research (Mathiassen 2002), a particular form of

action research that is characterized by strong collaboration between practitioners and

researchers to effect change. The dual goal of the research was 1) to improve software practices

at TelSoft, and 2) to contribute to scientific knowledge on ambidextrous innovation, in the

particular context of software firms. As shown in Figure 2, the research was executed in

collaboration between TelSoft employees and the UIC research team and organized into a

steering committee (SC), a problem solving team (PST), and temporary innovation project

teams. The SC involved senior management from TelSoft and met two or three times per year as

needed to oversee the project. The PST, which consisted of middle-level managers at TelSoft and

the researchers, was responsible for diagnosing current practices, identifying and prioritizing

innovations, and establishing projects to focus on specific innovation areas. In this study, we

describe and analyze project portfolio management, the focus of one if the dedicated innovation

projects at TelSoft. The goals of this project were to formulate, revise, and communicate

www.manaraa.com

Paper 4: Becoming Ambidextrous 141

TelSoft‟s innovation strategy; set priorities for software projects; and develop new practices for

allocating resources across projects, customers, and products. Consistent with the iterative

learning approach typically found in action research studies (Susman and Evered 1978; Davison,

Martinsons et al. 2004), this innovation project followed four phases: diagnosing, visioning,

intervening, and practicing.

Data Collection
Our data collection occurred through all four phases and used multiple sources of qualitative data

as summarized in Table 1. In the diagnosing phase, we began by understanding the current

problems and practices that required change at TelSoft. The primary data sources for this phase

were semi-structured interviews with 22 representatives from three major stakeholder groups:

software development, internal customers, and external customers. The purpose of the interviews

was to gather perceptions of strengths, weaknesses, and opportunities for innovation at TelSoft.

The first author was the primary interviewer and was frequently joined by one or two other

members of the UIC research team. Where possible, these interviews were recorded and later

transcribed. In all cases, field notes were taken for later analysis. In addition, we held workshops

with employees to confirm our diagnoses, resulting in a comprehensive report prepared by the

PST and presented to top management. This report was subsequently used in our data analysis.

The purpose of the visioning phase was to create new ways to manage project portfolios at

TelSoft. Over the course of three meetings, members of the PST established a formal software

coordination group (SCG). The group would meet monthly and follow a fixed agenda covering

current projects, business opportunities, improvement initiatives, and strategy. These meetings

were facilitated by two of the authors. The SCG consisted of four TelSoft employees: Division

President, Vice President (VP) of Software, Development Manager, and Product Manager as

shown in Figure 3. Key data sources during this phase included recordings of the planning

meetings, meeting notes, the resulting project plan, and the first two meetings of the SCG.

During the intervening phase, we enacted the vision by facilitating several SCG meetings, which

were recorded and transcribed. SCG members prepared documents in advance of the meetings

and these became important data sources. For the current project review, the Development

Manager prepared a spreadsheet listing cost, schedule, and quality assessments for each project.

For the review of new opportunities, the Product Manager provided a prioritized list of possible

business opportunities, business cases, and maintained a list of future product releases.

During the practicing phase, the emerging approaches to project portfolio management became

integral parts of the way of operating at TelSoft. This phase focused on practicing project

portfolio management, evaluating the initiative‟s impact, and reflecting on what had been learned

from this experience. The SCG meetings continued to be a major data source, but we also

conducted semi-structured interviews with ten selected employees and customers.

Data Analysis
This iterative nature of action research, in particular, assures that data collection and data

analysis are intertwined. Thus, data analysis proceeded across project phases and informed

activity in subsequent phases. For example, the research team met during the diagnosing phase to

detect patterns emerging from the interview data and to reflect upon what was learned. We

www.manaraa.com

Paper 4: Becoming Ambidextrous 142

created interim reports and held status meetings with members of the software development

group. To address the question of ambidexterity, we coded data reflecting the concepts of

performance management, social support, alignment, and adaptability (Gibson and Birkinshaw

(2004). These codes are summarized in Table 2. Following a strategy of temporal bracketing

(Langley 1999), the data were divided into the phases of diagnosing, visioning, intervening, and

practicing, We then analyzed coded data within each phase and extracted the organizational

practices that facilitated and balanced alignment and adaptability. Once data for all phases were

analyzed, we conducted an analysis across phases to show the mechanisms that caused

ambidexterity to increase or decrease.

Results
In this section, we describe TelSoft„s process of becoming ambidextrous while innovating project

portfolio management. Ambidextrous project portfolio management involves balancing

alignment (monitoring existing projects) with adaptability (identifying new projects) by

effectively allocating resources across both existing and future projects. In the Diagnosing

Section, we assess the degree of alignment and adaptability that existed at TelSoft. The three

following sections explain how the action research project transformed project portfolio

management at TelSoft. Following Pettigrew‟s contextualist approach, we identify aspects of the

process, context, and content for each phase of the transformation as summarized in Table 3.

Diagnosis
Context. TelSoft‟s systems, processes, and beliefs did not support people working in a

disciplined fashion to meet or exceed business objectives. Instead, each project manager had

considerable autonomy in executing projects and managing the budget. As a result, project

outcomes varied considerably depending upon the project manager and resources used. For

instance, the TelSoft project manager for one of the major clients frequently prioritized producing

a high quality product over controlling the triple constraint of successful projects: cost, scope,

and time. As a result, his software development projects at TelSoft frequently missed deadlines

and exceeded the budget. This practice continued, in part, because there were no rewards for

either project failure or success. Employees we talked to said that there were few incentives for

meeting or exceeding project objectives. Long-time project managers faced no threat of being

replaced, and non-management employees had limited opportunities for promotions or increased

responsibilities. Incentives were not given to acknowledge exemplary performance, resulting in

low employee morale among employees who had not received a raise in three years.

Two other important issues contributed to poor performance management. First, TelSoft did not

facilitate or encourage employee development. Task assignments were made to use existing

expertise rather than to provide opportunities for professional development. Second, there was no

systematic process for allocating scarce talent across projects to ensure the company‟s

profitability. TelSoft‟s Product Manager identified a limited pool of four qualified engineers, who

had to be spread across three projects. Rather than allocating resources to maximize profit,

TelSoft privileged requests from major clients over requests from internal customers, which

jeopardized the productivity of the company as a whole.

TelSoft‟s social support context emphasized the roles that external customers and the Division

President played in selecting innovation projects. Existing customers were a major impetus for

www.manaraa.com

Paper 4: Becoming Ambidextrous 143

process and product innovation at TelSoft. In July 2000, TelSoft was prompted into process

innovation by a major client‟s requirement for outside certification of its software capability by

achieving level 2 on the Software Capability Maturity Model (CMM) (Paulk, Curtis et al. 1993;

Paulk, Weber et al. 1995). However, after only one year of engaging in software process

improvement, all resources associated with this initiative were abruptly reassigned when the

client removed the certification requirement. Subsequently, no organized activity focused on

improving management of individual projects or the project portfolio. Although the major

customers appreciated TelSoft‟s responsiveness to their requests, they also wanted TelSoft to be

more proactive in investing in its products. One customer commented:

“TelSoft has a tendency to wait until their major clients tell them they want

something before they do something that may make their software better. TelSoft

should have been working on things on their own for the core product and we

shouldn‟t have to ask for them and pay for them.” (Client Liaison, interview)

The Division President was another significant actor setting the direction for product

innovations. The VP of Software claimed that the Division President operated based upon

hunches, reacting to events emotionally or intuitively. As a result, company-sponsored product

innovations were often not aligned well with the market and were, therefore, unsuccessful. In the

light of these failed innovation attempts, TelSoft‟s employees were hesitant to move forward and

take risks. The CEO‟s resulting halt on “speculative development” effectively eliminated

enthusiasm around innovation. These failures also made several employees skeptical as the

action research study began:

“I did have some skepticism about it initially. I was involved in CMM initially

and that was a total flop. It was all about defining the process – not how to

implement or follow them. Then all that stuff got forgotten. It wasn‟t easy to get

me fired up about this.” (Development Manager, interview)

Despite this drawback, trust and support among the management team members was high. The

VP of Software had worked with several of his direct reports for over 15 years and a friendly,

comfortable relationship existed. When cost overruns and blown schedules occurred, the VP‟s

displeasure was tempered by a belief that the managers were committed to doing the best job that

they could under difficult circumstances.

Content. TelSoft‟s capability for alignment at this point was fairly positive. Employees rallied

behind some project managers to ensure the completion of assigned work, although the strength

of alignment varied across project managers. TelSoft continued to select projects reactively and

lacked a shared vision of a long-term product strategy or optimal project portfolio. In this way,

TelSoft lacked adaptability. TelSoft employees focused on known products and services and were

reluctant to invest in changes. There were no systems in place for assessing processes and

products and improving them. Although TelSoft quickly responded to the needs stated by its

customers, it had a dismal track record when it came to responding to the market at large.

www.manaraa.com

Paper 4: Becoming Ambidextrous 144

Visioning Phase
By June 2005, a new Division President had arrived and was ready to make additional changes.

With the UIC‟s diagnostic report, the SC committed to working with the UIC for the next 18

months to change software practices. Although a number of innovation areas and projects were

identified, we focus here on the creation of the software coordination group (SCG) as a

mechanism for project portfolio management.

Process. After a series of planning meetings with members of the PST, the research team and

VP of Software submitted a detailed plan to the proposed members of the SCG in November

2005. A kick-off meeting was held to ensure that each member understood his role in the group

and to allow refinements to the initial agenda covering current projects, business opportunities,

improvement initiative, and strategy.

Three important events occurred during the visioning phase. First, the SCG clarified the

company‟s mission, targeted markets, and operating policies. Following the sense-and-respond

model (Haeckel 1995, 1999), the SCG collaborated with the CEO to create a “reason for being”

statement. The group also articulated its software strategy, which named the organization‟s main

customers, products, and development approach. Nine specific policies contained in the software

strategy were contributed by members from all levels of the organization and comprised succinct

statements of practices that TelSoft members would perform in support of the business

objectives. Policies included, for example, requiring approval of the quality assurance

department before delivering official releases; and managing each development project with a

two-phase funding approach that separated requirements and development activities. After

discussion, the SCG reached consensus on the reason for being, software strategy, and policies

which collectively became known as TelSoft‟s software charter.

Second, the SCG agreed to the importance of key performance indicators (KPIs) for assessing

current projects. The VP of Software reinstituted a practice of all project managers creating

weekly status reports. The Development Manager assumed responsibility for collecting the

information and distributing it to team members before the SCG meetings began.

Third, the SCG began the practice of reviewing business opportunities. The Product Manager

prepared a cost-benefit analysis template for justifying investments. During the first two

meetings, he used this template to present two business opportunities for product innovation. The

proposed innovations were for enhancements to TelSoft‟s existing product line and already had

the broad support of managers in the room.

Context. The visioning phase saw some improvements to performance management,

specifically in the desire to become more disciplined about monitoring and tracking the

company‟s performance objectives. The SCG was committed to the idea of using status

information about current software development projects to facilitate project portfolio

management. They believed that monitoring KPIs would serve as an “early warning system,”

allowing them to catch troubled projects early enough in the development cycle to identify

corrective actions. At the same time, they hoped that tracking the KPIs would encourage

individual project managers to improve project performance. However, contextual factors

prevented TelSoft from realizing these benefits. The biggest problem was that information

www.manaraa.com

Paper 4: Becoming Ambidextrous 145

supplied by project managers was frequently in an unsuitable format, incomplete, or submitted

too late to be included in discussions:

“He did finally give me the KPIs about five minutes before the meeting, so I

didn‟t have time to get it together here.” (Development Manager, SCG #1)

In another instance, the Development Manager neglected to provide current project information

during the second meeting due to his confusion about the meeting time. The SCG tolerated these

information quality issues and did not hold the project managers accountable.

Another problem involved the market intelligence underlying business cases presented by the

Product Manager. When the SCG members asked questions during his presentation, the Product

Manager admitted that he lacked supporting evidence for many of his assumptions. At one point

the VP of Software called the estimates in the business case “outrageous.” Despite such

problems, the group decided to pursue one of the opportunities presented.

There was also improvement to the social support context, particularly in the Division

President‟s involvement of more people in strategic planning. The “reason for being” and

software strategy were created in a collaborative manner and shared with others in the

organization. The commitment to the action research study showed a willingness to break with

tradition and consider alternative ways of thinking. With respect to product innovation, the

Division President wanted anyone within the organization to be able to make suggestions for

new business possibilities. He referred to the Product Manager as being the “gatekeeper of

opportunities”:

“He might think it‟s the craziest damn idea he ever heard. But I think, to be open

to that person that‟s come with the idea, [he should] at least give it the credibility

of being recorded.” (Division President, SCG #1)

The SCG members were open to direction, criticism, and new ways of thinking from the

UIC researchers. For instance, the following comment challenged TelSoft management to

think more deliberately about the level of discipline on projects which were internally

funded:

 “Do you treat yourself as a customer on equal footing with other customers or do

you give yourself bigger freedom in being flexible and democratic in the way that

you deal with yourself as a customer? You know, you would never accept from

[major client] all that jockeying back and forth.” (Researcher, SCG #1)

Content. During the visioning phase, alignment was increased among SCG members through

the creation of systems for defining, debating, and modifying performance against business

objectives. The software strategy and reason for being were explicit, shared understandings of

the criteria that would be used for assessing product innovations. The fixed agenda documented

important areas to be discussed each month. Agreement on KPIs specified key business

objectives to the project managers at TelSoft. Although beliefs were changing among members of

www.manaraa.com

Paper 4: Becoming Ambidextrous 146

the SCG, it was too early to tell whether others outside the SCG would adapt their behavior

based upon these systems.

With respect to adaptability, the SCG struggled to think radically about new markets and uses for

their software product. In fact, the business cases proposed were largely in line with old modes

of doing business targeting the same markets. Yet, their openness in allowing outsiders from the

UIC to challenge existing practices at TelSoft and their commitment to monthly meetings were

both promising signs that changes to adaptability could take place.

Intervening Phase
The intervening phase began in January 2006, the first meeting in which the Development

Manager provided data about current projects using the KPIs. The key characteristic of this

phase was the SCG‟s uncertainty in interpreting information that was brought to its meetings.

This uncertainty continued through July 2006, at which point the group began to base decisions

more confidently on the data presented.

Process. The SCG spent substantial time during the intervening phase extending practices

initiated during the visioning phase. For instance, the software charter was more broadly

communicated to employees through workshops and to external customers through a letter from

the Division President. The metrics used for current projects were also reported on time,

although the data itself could not always be trusted. This revealed a larger deficiency in the

systems and tools used for tracking actual project performance against the project plan. To begin

addressing this deficiency, the VP of Software developed a tool to retrieve data from the human

resource time tracking system automatically and to calculate critical values needed for the KPI

report. Finally, the format for presenting business opportunities changed. Instead of presenting

detailed business cases justifying a specific software innovation, the Product Manager reported

on the list of sales leads being pursued and the status of those leads.

The SCG also introduced periodic customer account reviews as an important new practice during

this phase. In these reviews, the project managers reflected on the performance of the most

recent releases, identified open issues, and talked about future business opportunities. These

more formal reviews held the project managers accountable to the new Division President. At the

same time, attending the SCG meetings allowed these project managers to learn first hand about

the activities of the SCG and the importance of the KPI data.

Context. During the intervening phase, project managers were held more accountable for

project performance, and feedback was used to improve performance. The VP of Software

enforced the discipline of weekly written status reports and instituted periodic oral customer

account reviews. One noticeable feature during this phase was that the SCG members began to

use status information about the projects, despite their limitations, to identify troubled projects.

Project managers typically reported that their projects were “going smoothly” even as the

evidence suggested otherwise. The VP of Software then accepted responsibility for following up

with project managers when there appeared to be discrepancies with the data presented, as

evidenced through the following comment:

www.manaraa.com

Paper 4: Becoming Ambidextrous 147

“I‟m going to invite [project manager] to do a [major account] project review at

the next meeting and we‟ll rake him over because it ain‟t going smoothly.” (VP of

Software, SCG #6)

Although the monthly reporting of KPIs increased awareness of problems, TelSoft‟s project

managers were urged to stretch themselves more to meet project goals. Monthly KPI reports

continued to show that most projects missed deadlines and went over budget – even projects that

the group had thought were going to be successful:

“I don‟t see any corrective action plans coming from the projects when schedules

slip. What I see is, you know, „this took longer than we thought or we had this

issue come up‟ …and then there‟s no attempt to make a corrective action plan to

get back on track” (VP of Software, SCG #8)

As more pressure was placed on the project managers to provide reliable status information,

problems with the social support context became apparent. The system of gathering project

information required people throughout the organization to work together: the project managers

created the overall plans; the development coordinator scheduled developers for specific tasks;

developers provided status against those plans; and the project manager adjusted the project plan.

The project managers complained that the developers did not provide appropriate estimates. For

their part, the project managers did not always adjust their plans to reflect what was learned as

the project tasks solidified. Overall, this lack of coordination and communication among the

project managers, development coordinator, and developers caused confusion and prevented

progress.

Other social support problems also reduced project performance. Projects remained open and

incurred cases long after the development work was complete. In some cases, the project

manager insisted on personally completing certain aspects of the project rather than trusting

others within the department to handle them:

“I haven‟t had a chance to read three of the file documents and I typically I don‟t

like to ship documents that I haven‟t had a chance to read and review and edit.”

(Project Manager, SCG #7)

Content. During the intervening phase, TelSoft was more successful with adaptability, as they

tried new techniques to attract potential customers. They purchased a new contact management

system and began to track sales leads, pursuing customers outside of their traditional markets.

Breaking with the tradition of responding to customer requests, TelSoft managers proactively

planned to revive the failed spatial database software. This product vision was shared with one of

the major clients and TelSoft requested feedback regarding the most attractive product features.

Although the potential for financial sponsorship was uncertain, the TelSoft managers felt this

exercise would provide useful insights.

Practicing Phase
The practicing phase began in August 2006 and ended in February 2007, when the initial TelSoft-

UIC collaboration ended. During this phase, the SCG started to focus mostly on practicing

www.manaraa.com

Paper 4: Becoming Ambidextrous 148

project portfolio management as developed over the previous phases. Also, toward the end of the

phase, we interviewed several employees about the impact of the initiative as well as the

effectiveness of the SCG.

Process. During the practicing phase, the SCG continued to meet and became an integral part

of the management structure at TelSoft. There were several areas of improvement: the VP of

Software took more ownership of the meetings with less interaction from the researchers; the

software charter was posted to the company‟s website and shared face-to-face with management

representatives from the major clients; and a new procedure for conducting post-project reviews

was created. Furthermore, the Division President and CEO agreed to continue working with the

UIC for another year with the specific focus on developing the project management capabilities

of selected employees. Not all changes were positive, however. During this phase, TelSoft

experienced a critical shortage of sales personnel and loss of market intelligence when one of its

two sales people resigned. The poor quality of status information during project reviews also

persisted.

Context. The practicing phase was characterized by more critical discussions and questioning

during the current project review, again trying to use KPI‟s to make decisions. There was an

increased emphasis on holding project managers accountable:

“So what I‟ve done there is ask major project managers for [major clients] to

watch the numbers, …try to take some responsibility for what time is being

charged to their space.” (VP of Software, SCG #10)

During this phase, the VP of Software decided to assign a project manager to plan and track this

money. The SCG members valued having a historical record of the project data. The group

realized that their KPI reports were not the early warning system they had imagined; however,

managers were interested in learning from their failures. They informally spoke about lessons

learned from each project and also looked forward to incorporating knowledge learned from

more formal post-project reviews.

“Four months ago we thought we were going to do a whole lot better with the

project, so when we do a post project review on this, one of things we‟ll be

looking at is what kind of things happened [here] (VP of Software, SCG #15)

There were still some issues with people at lower levels of the organization not sharing

information. For instance, in discussing reasons for a project slipping, the Development Manager

indicated that a developer had wasted 15 hours trying to figure something out alone instead of

asking his immediate supervisor for assistance.

Content. During this phase, alignment among SCG members continued to grow. The software

charter made even non-SCG members aware of the company‟s strategic direction. However,

there remained opportunities for working more coherently across levels of the organization.

Adaptability was sustained through the business opportunity reviews, and TelSoft decided to

invest resources in training project managers.

www.manaraa.com

Paper 4: Becoming Ambidextrous 149

Discussion
We framed our inquiry into becoming ambidextrous as a contextualist study employing the

methodology of action research. The principal advice on building contextual ambidexterity into

organizations comes from Birkinshaw and Gibson (2004), who recommend that organizations

initially diagnose their context and take specific actions based upon those findings. For

organizations, like TelSoft, that are diagnosed as weak in performance management but stronger

at social support, the recommended action is to focus first on performance management.

Performance management can be improved through top-down interventions such as clarifying

and communicating the company‟s strategic goals, focusing on cost reduction and quality, and

establishing incentives for performance among unit managers. Such focused attempts at change

should be consistently communicated throughout the organization. At the same time, individuals

within the organization should be encouraged to increase both alignment and adaptability

through specific work practices. Finally, both structural and contextual means of achieving

ambidexterity should be considered.

Our action research study incorporated this advice by mapping research activities onto phases in

the change process. We began by conducting an initial diagnosis of TelSoft‟s organizational

context and identified the company as fitting the country-club context (i.e., strong social support,

weak performance management) in which employees felt comfortable in an informal, collegial

working situation but were not pushed to high performance. Given the need to improve

performance management, a top-down change initiative was envisioned with the assistance of

the UIC researchers. The intervention engaged employees from all levels of the organization to

participate on innovation teams. The SCG was formed to facilitate alignment and adaptability

with respect to project portfolio management. The fixed agenda of the SCG was a symbol that

allowed integration between what was primarily a short-term, alignment based activity (current

projects) and a long-term focus on adaptability (new business opportunities). TelSoft’s

management increased leadership during the practicing phase as the researchers gradually

reduced their level of activity and influence.

Although the concept of contextual ambidexterity proved to be a useful guide to our research

efforts, the primary limitation of this concept is its ambiguity about the actual process of

becoming ambidextrous. The existing literature provides some guidelines for building

ambidexterity into organizations (Birkinshaw and Gibson 2004; Gibson and Birkinshaw 2004),

but prior studies have not taken a process perspective by tracking either contextual or content

changes over time. Consequently, one may assume that there are alternative paths to becoming

ambidextrous, but the absence of even one empirically supported process represents a serious

gap in theory about ambidexterity.

To compensate for the lack of specificity regarding process, we complemented the insights from

contextual ambidexterity with principles of contextualist inquiry (Pettigrew 1985, 1987).

Contextualist inquiry offered us an expanded framing that proved compatible with the concept of

contextual ambidexterity while at the same time suggesting that content and context interact and

mutually shape each other through the process of becoming ambidextrous. In the spirit of

building theory from process data and case study research (Eisenhardt 1989; Langley 1999;

Eisenhardt and Graebner 2007), we propose a four-phase model for becoming ambidextrous in

Table 3. The model incorporates contextualist inquiry‟s two-dimensional approach by focusing

www.manaraa.com

Paper 4: Becoming Ambidextrous 150

on the horizontal unfolding of the change process across the four phases of the action research

and the interaction between content and context.

The close association between the four phases and the phases of the action research process

should not be surprising. Because action research has the dual purpose of guiding organizational

change and contributing to scientific knowledge (Rapoport 1970; McKay and Marshall 2001),

the resulting theoretical model should closely match the change activities. Hence, we adopted

phases consistent with the action research cycle (Susman and Evered 1978) in which each phase

is characterized by specific objectives and actions which, in turn, affect context and content in

subsequent phases.

Although it is not shown in Table 3, the process is cyclical. This means that changes to practice

following one cycle should be diagnosed at the beginning of a second cycle. While our empirical

data follow only one cycle to completion, it is clear that TelSoft has additional room for

improvement in both alignment and adaptability. There is a risk that gains would erode over time

without continued cycles, and we also learned about future areas targeted for improvement. For

instance, in light of the continuing problems related to status information quality, the VP of

Software has recently designed an intervention in which the Development Manager and project

managers would meet the day before SCG meetings to ensure that the data presented to the SCG

was both accurate and up-to-date. Thus, the cycles could continue indefinitely.

When looking across the horizontal dimension of the model (i.e. the changes in context and

content over time), deeper insights become apparent. Table 3 shows that TelSoft first dealt with

contextual issues (social support and performance management) before realizing improvements

to content (alignment and adaptability). In fact, the main emphasis during the visioning phase

was not on improving ambidexterity per se, but rather on transforming the context to better

facilitate ambidexterity. The visioning phase focused on creating shared beliefs among SCG

members with respect to performance management and social support through exercises such as

creating a reason-for-being statement, and crafting a software strategy with specific policies.

These activities helped integrate the top management team, an important enabler of higher

ambidexterity particularly in small firms (Lubatkin, Simsek et al. 2006). However, very few

specific actions to change alignment and adaptability were identified initially. Actions during the

intervening phase concentrated on investments in context, this time yielding some improvements

in adaptability. Finally, the practicing phase saw changes to both context and content. Given that

nearly ten months passed before impacts on alignment and adaptability became visible suggests

that becoming ambidextrous is a long-term process requiring managerial patience.

Our analysis suggests that transformation of context is not a simple progression of

improvements. Although performance management and social support at TelSoft both improved

across the phases, setbacks were apparent, especially during the intervening phase when social

support suffered. Given the seriousness of the issues tackled, we should not expect the road to

ambidexterity to be smooth. At TelSoft, it was only after both the performance management and

social support context had stabilized during the practicing phase that major improvements to

alignment were demonstrated.

www.manaraa.com

Paper 4: Becoming Ambidextrous 151

To the insights drawn from the model, we add a conclusion regarding the importance of choosing

initial targets for becoming ambidextrous. Prior research into ambidextrous organizations has

considered ambidexterity as a property at the organizational, business unit, and individual levels

(Tushman and O'Reilly III 1996; Gibson and Birkinshaw 2004). Our research also finds that the

process of becoming ambidextrous can be applied to specific managerial practices within the

organization. Managers should carefully select the managerial practices that will drive the

innovation process. Identifying and evaluating salient aspects of organizational context is

difficult when seen from a general point of view. Instead, approaching organizational context

from the vantage point of specific managerial practices creates the backdrop against which sense

making about and intervention into the organizational context becomes operational.

TelSoft had a number of management practices which might have been the focus of an

innovation effort. For instance, TelSoft was also concerned about the management practices

throughout the software development process: from managing software requirements elicited

from customers, to developing software to match those requirements, to certifying the resulting

software product. At TelSoft, we identified project portfolio management as a key managerial

activity in which the firm‟s ability to align and adapt was challenged. Although the diagnosis

strongly suggested that TelSoft also needed to transform management of individual projects,

beginning with project portfolio management had a number of advantages. Focusing on project

portfolio management required involvement of most developers and managers within the

organization and also required critical reflections over the interactions between development,

sales, and marketing. In this way, our choice of a target at TelSoft allowed more participation on

core issues. Alternatively, focusing on transforming management of individual projects could

have led to sub-optimizing behaviors that could easily have ignored the organization‟s overall

position in the marketplace. A project focus could also emphasize process innovations over

product innovations, again ignoring external market needs. Our conclusion is, therefore, to focus

initially on key issues that have wide impact in the organization.

Conclusion
Ambidexterity is increasingly acknowledged as an important organizational capability, yet

managers receive limited actionable advice on how it can be developed. To fill this void, we

conducted a two-year action research study with TelSoft, a small software firm attempting to

innovate project portfolio management. Drawing from Birkinshaw and Gibson‟s arguments

concerning contextual ambidexterity (2004) and Pettigrew‟s contextualist inquiry (1985; 1987),

we generated a process model showing how alignment and adaptability practices improved over

four phases of managed change: diagnosing, visioning, intervening, and practicing. The model

draws attention to the dynamics of change and the interactions between process, context, and the

content of planned change.

As with all research, this study has limitations that should be acknowledged and that also have

implications for future research. By design, we report from activities within a single organization

focusing on the managerial practice of project portfolio management. Such a single-case design

does not allow for comparisons across contrasting cases that could further substantiate our

findings. For example, the later stages of our model may be sensitive to the antecedent

conditions revealed in the diagnostic phase. Other organizations may likely have different initial

diagnoses that require the remaining phases to be conducted differently. Although the phases of

www.manaraa.com

Paper 4: Becoming Ambidextrous 152

the model are sufficiently generic to apply across many organizations, the particular dynamics

involving context and content may differ depending on antecedent conditions.

A second limitation derives from our narrow focus on one aspect of improvement at TelSoft.

Although the selection of project portfolio management over tasks such as project management

had a purported benefit, our isolated analysis prevents the generation of insights about learning

across different innovation projects. Such research could address questions about the possibility

for an organization to become ambidextrous in some ways but not others. Conceivably, lessons

learned from one managerial practice might transfer to another practice, yet further research is

needed to unravel the process.

Another limitation of the research lies in the restricted conceptualization of organizational

context, which rested exclusively on Gibson and Birkinshaw‟s (2004) original conception.

Future research could enrich theory by inducting different aspects of organizational context that

influence the process of becoming ambidextrous.

Our findings have direct implications for practicing managers seeking to create more

ambidextrous organizations. Our analysis of the change process indicates the value of structuring

discrete phases within which various areas of context or content receive emphasis. For example,

we discovered the importance of addressing contextual issues early so that the proper conditions

(social support, heightened performance management) for improving other capabilities are

established. Over time, managers should anticipate such shifts between improvements in context

and content.

As action researchers, two of the authors of this paper participated directly as change agents at

TelSoft. However, the organizational objective of improvement does not necessarily depend on

external change agents. Although we believe in the value added by independent researchers and

change agents, managers may follow the same process without outside intervention. The analysis

provided in this paper can thus serve as a template for manager-led process of becoming

ambidextrous.

 References
1. Adler, P. S., B. Goldoftas, et al. 1999. Flexibility versus efficiency? A case study of model

changeovers in the Toyota production system. Organ. Sci. 10(1) 43-68.

2. Argyris, C. (1985). Action science. San Francisco, Jossey-Bass.

3. Barley, S. R. and G. Kunda. 2001. Bringing work back in. Organ. Sci. 12(1) 76-95.

4. Baskerville, R. and T. Wood-Harper. 1998. Diversity in information systems action research

methods. Eur. J. Inform. Systems. 7(2) 90-107.

5. Birkinshaw, J. and C. Gibson. 2004. Building ambidexterity into an organization. Sloan

Management Rev. 45(4) 47-55.

6. Boehm, B. W. 2002. Get ready for agile methods, with care. Comput. 35(1) 64-69.

7. Boehm, B. W. and R. Turner (2004). Balancing agility and discipline: A guide for the

perplexed. Boston, Addison-Wesley.

8. Checkland, P. (1981). Systems thinking, systems practice. Chichester, Wiley.

9. Checkland, P. (1990). Soft systems methodology in practice. Chichester, Wiley.

www.manaraa.com

Paper 4: Becoming Ambidextrous 153

10. Clark, K. B. and S. C. Wheelwright. 1992. Organizing and leading

„heavyweight‟development teams. California Management Rev. 34(3) 9-28.

11. Davison, R. M., M. G. Martinsons, et al. 2004. Principles of canonical action research.

Inform. Systems J. 14(1) 65-86.

12. De Reyck, B., Y. Grushka-Cockayne, et al. 2005. The impact of project portfolio

management on information technology projects. Internat. J. Project Management. 23(7)

524-537.

13. Eisenhardt, K. 1989. Building theories from case study research. Acad. Management Rev.

532-550.

14. Eisenhardt, K. and M. E. Graebner. 2007. Theory building from cases: Opportunities and

challenges. Acad. Management J. 50(1) 25-32.

15. Floyd, S. and P. Lane. 2000. Strategizing throughout the organization: Managing role

conflict in strategic renewal. Acad. Management Rev. 25 154-177.

16. Ghoshal, S. and C. A. Bartlett. 1994. Linking organizational context and managerial action:

The dimensions of quality of management. Strategic Management J. 15(Summer) 91-112.

17. Gibson, C. and J. Birkinshaw. 2004. The antecedents, consequences, and mediating role of

organizational amidexterity. Acad. Management J. 47(2) 209-226.

18. Haeckel, S. 1995. Adaptive enterprise design: The sense-and-respond model. Planning Rev.

23(3) 6-13, 42.

19. Haeckel, S. (1999). Adaptive enterprise: Creating and leading sense-and-respond

organizations. Boston, MA, Harvard Business School Press.

20. He, Z.-L. and P.-K. Wong. 2004. Exploration vs. Exploitation: An empirical test of the

ambidexterity hypothesis. Organ. Sci. 15(4) 481-494.

21. Hobday, M. 2000. The project-based organisation: An ideal form for managing complex

products and systems. Res. Policy. 29(7-8) 871-893.

22. Holmberg, L. and L. Mathiassen. 2001. Survival patterns in fast-moving software

organizations. IEEE Software. 18(6) 51-55.

23. Horvat, R. V., I. Rozman, et al. 2000. Managing the complexity of SPI in small companies.

Software Process: Improvement and Practice. 5(1) 45-54.

24. Langley, A. 1999. Strategies for theorizing from process data. Acad. Management Rev. 24(4)

691-710.

25. Lee, G., W. DeLone, et al. 2006. Ambidextrous coping strategies in globally distributed

software development projects. Comm. of the ACM. 49(10) 35-40.

26. Lee, G., W. DeLone, et al. 2007. Ambidexterity and global IS project success: A theoretical

model. 40th Annual Hawaii Internat. Conf. System Sci. 44-44.

27. Lubatkin, M. H., Z. Simsek, et al. 2006. Ambidexterity and performance in small-to medium-

sized firms: The pivotal role of top management team behavioral integration. J. Management.

32(5) 646-672.

28. Markowitz, H. 1952. Portfolio selection. The Journal of Finance. 7(1) 77-91.

29. Mathiassen, L. 2002. Collaborative practice research. Inform. Tech. & People. 15(4) 321-

345.

30. Mathiassen, L. and A. M. Vainio. 2007. Dynamic capabilities in small software firms: A

sense-and-respond approach. IEEE Trans. on Engrg. Management. 54.

31. McFarlan, F. W. 1981. Portfolio approach to information systems. Harvard Bus. Rev. 59(5)

142-150.

www.manaraa.com

Paper 4: Becoming Ambidextrous 154

32. McKay, J. and P. Marshall. 2001. The dual imperatives of action research. Inform. Tech. &

People. 14(1) 46-59.

33. Napier, N. P., L. Mathiassen, et al. (2006). Negotiating response-ability and repeat-ability in

requirements engineering. International Conference on Information Systems, Milwaukee,

Wisconsin.

34. Paulk, M., B. Curtis, et al. (1993). Capability maturity model for software, version 1.1.

Pittsburgh, PA, Software Engineering Institute.

35. Paulk, M., C. V. Weber, et al., Eds. (1995). The capability maturity model: Guidelines for

improving the software process. Sei series in software engineering. Boston, Addison-Wesley.

36. Pettigrew, A. M. (1985). Contextualist research: A natural way to link theory and practice.

Doing research that is useful for theory and practice. E. E. Lawler. San Francisco, Jossey-

Bass.

37. Pettigrew, A. M. 1987. Context and action in the transformation of the firm. J. Management

Stud. 24(6) 649-670.

38. Pettigrew, A. M. 1990. Longitudinal field research on change: Theory and practice. Organ.

Sci. 1(3) 267-.

39. Ramesh, B., J. Pries-Heje, et al. (2002). Internet software engineering: A different class of

processes. Annals of software engineering, Kluwer Academic Publishers. 14: 169-195.

40. Rapoport, R. 1970. Three dilemmas in action research. Human Relations. 23(6) 499-513.

41. Sabherwal, R. 1999. The role of trust in outsourced IS development projects. Comm. of the

ACM. 42(2) 80-86.

42. Salo, O. and P. Abrahamsson (2005). Integrating agile software development and software

process improvement: A longitudinal case study. International Symposium on Empirical

Software Engineering.

43. Susman, G. and R. Evered. 1978. An assessment of the scientific merits of action research.

Admin. Sci. Quart. 23(4) 582-603.

44. The Standish Group International. (2004). "2004 third quarter research report." from URL

http://standishgroup.com/sample_research/PDFpages/q3-spotlight.pdf.

45. Tushman, M. and C. A. O'Reilly III. 1996. Ambidextrous organizations: Managing

evolutionary and revolutionary change. California Management Rev. 38(4) 8-30.

46. Vinekar, V., C. W. Slinkman, et al. 2006. Can agile and traditional systems development

approaches coexist? An ambidextrous view. Inform. Systems Management. 23(3) 31-42.

47. Weinberg, G. M. (1986). Becoming a technical leader: An organic problem solving

approach. New York, Dorset House.

48. Weinberg, G. M. and D. P. Freedman (1982). Handbook of walkthroughs, inspections and

technical reviews. Boston, Little Brown and Company.

www.manaraa.com

Paper 4: Becoming Ambidextrous 155

Figures and Tables

Figure 1: Contextualist Inquiry into Becoming Ambidextrous

Contextual Ambidexterity View

Alignment

Adaptability

Performance Mgt.

• Discipline

• Stretch

Social Support

• Support

• Trust

influences

Context Process Content

Figure 2: Action Research Organization

Short-term teams addressing one
or more innovation areas

(e.g. Software Coordination Group)

TelSoft: VP of Software
Development, Three managers

UIC: Three researchers

TelSoft: CEO, Division
President, VP of Software
Development

UIC: Two researchers

Initiating

Steering
Committee

(SC)

Problem Solving
Team
(PST)

Innovation
Projects

Figure 3: TelSoft Management Organization

Division

President**

VP –

Sales

(3 subordinates)

VP –

Software**

VP –

Data Services

Development

Manager**

(12 subordinates)

Product

Manager**

2 Project

Managers

Quality

Manager

(2 subordinates)

** Indicates Software Coordination Group member

www.manaraa.com

Paper 4: Becoming Ambidextrous 156

Table 1: Data Sources by Project Phases

www.manaraa.com

Paper 4: Becoming Ambidextrous 157

Table 2: Coding Scheme (Gibson and Birkinshaw 2004)

www.manaraa.com

 158

Table 3: Becoming Ambidextrous at TelSoft

CONSTRUCT

PROCESS

CONTEXT:

Performance

Management

Low

 Project outcomes and

processes varied by

project manager

 Few rewards or

incentives

 Limited training

opportunities

 Unsystematic process for

resource allocation across

projects

Some improvement

 SCG committed to idea of

using objective

information for decision

making

 Information quality

issues

Major improvement

 Beginning to hold project

managers accountable for

information quality

 Increased feedback to

improve performance

Neutral

 Increased emphasis on

holding project

managers accountable

 Historical KPI data

considered in decision

making

 Instituted formal post-

project reviews

CONTEXT:

Social Support

Medium

 Selected individuals drive

innovation and strategy

 Hindered by prior failed

innovation attempts

 High trust among long-

term employees

Some improvement

 More participative means

for directing innovation

and setting strategy

 SCG members accept

critique from researchers

on improvement

Some setbacks

 Problems coordinating

and communicating

project tasks among

employees

 Failure to delegate

impacts project success

Some improvement

 Continued

communication issues

about project tasks

 Emphasis on learning

from failed projects

CONTENT:

Alignment

Medium

 Employees ensure work

completed for individual

projects

 Reactive mode for

deciding upon whether to

initiate projects

Neutral

 SCG fixed agenda and

software charter yet to be

tested

Neutral

 Social support problems

prohibit alignment

among employees

Major improvement

 Software charter widely

distributed

 SCG fixed agenda

deemed useful for

continuing

CONTENT:

Adaptability

Low

 Focused on known

products and services

 Limited investment in

innovating products or

processes

Neutral

 Still focused on known

products and services

Some improvement

 New techniques

implemented for

generating leads

 Product roadmap

describes long-term

vision for innovation

Some improvement

 Diversity of business

opportunity list

continues

 Plans to create roadmap

for entire product suite

Diagnosing Visioning Intervening Practicing

www.manaraa.com

 159

Part III: Problem Solving Cycle

www.manaraa.com

 160

This part of the dissertation documents key events from August 2004 through March 2007

designed to understand and improve software practices at TelSoft.

Prologue

This study originated from a directed readings course on action research taken with Dr. Lars

Mathiassen in Fall 2004. Dr. Roy Johnson also attended these class sessions. We decided to

complement the intellectual study of the methodology with actual practice. We explored the idea

of trying to establish new relationships with local software companies. However, it soon became

clear that my former employer, a small software organization in Atlanta, would provide an

optimal fit in terms of geographic proximity and my research interests. After serving as a

software engineer at TelSoft from September 1999 to August 2003, I left on good terms to pursue

graduate education.

Our first challenge was getting the attention of TelSoft management. In mid-August 2004, I

began contacting my former manager by email and voice mail regarding possible research-

industry collaboration. After weeks passed with no response, Dr. Mathiassen became involved in

trying to speak to TelSoft‟s Vice President of Software Development as well as the Division

President about this opportunity. Again, there was no response. After much persistence, Dr.

Mathiassen finally spoke with TelSoft‟s CEO by phone. The CEO agreed to a lunch meeting on

October 12, 2004 for the GSU researchers to propose a collaboration arrangement.

This “Invitation to Collaboration” meeting was attended by the newly formed research team

(Napier, Mathiassen, and Johnson) along with TelSoft managers (CEO, VP of Software

Development, Division President, and Division Director). The research team presented slides [1]

consisting of information about the three team members, expected outcomes, required

commitments from each of the partners, and a suggested structure for managing the

collaboration. During this presentation, the Division President began sharing concerns about the

way requirements were managed at TelSoft. After hearing the presentation, the TelSoft

management took a short break for a private meeting. Upon returning, the CEO announced that

TelSoft would agree to participate through at least the diagnosing phase of the proposed study.

The TelSoft managers in attendance would serve as the project‟s SC. At the end of the

diagnosing phase, the SC would assess whether to continue the project.

Thus began a collaboration that led to an SPI initiative that spanned two years and formed the

basis for this dissertation. As the research project is organized according to the IDEAL model

(McFeeley 1996), this structure is also used in presenting the problem solving cycle, see Figure

4. After initiating the project, we diagnosed existing strengths, weaknesses, and opportunities

with respect to requirements practices. These insights fed two intervention cycles, each focused

on establishing improvement teams to recommend suggested changes and acting upon those

suggested changes. The project closed with a learning phase which asked identified stakeholders

to reflect upon the initiative‟s impact and the effectiveness of the improvement organization.

Figure 4: Problem Solving Timeline

www.manaraa.com

 161

Chapters 1-5 detail the activities in each phase of the IDEAL model. Appendix A provides a list

of problem solving documents generated during the course of the collaboration. Each document

is given a unique number which is cross referenced during the description of activities. Appendix

B provides the full text of selected project documentation.

www.manaraa.com

 162

Chapter 1: Initiating

The purpose of the initiating phase was to secure commitment from the client to begin work on

an improvement area (McFeeley 1996). This section describes the interactions with TelSoft

required to establish the “mutually acceptable ethical framework” (Rapoport 1970) serving as a

foundation for this action research study. Table 1: Initiating Key Dates provides an overview of

key dates during the initiating phase at TelSoft which are discussed in more detail in the next

sections.

Table 1: Initiating Key Dates

Date Activity

August 13, 2004 First email sent to software development manager

regarding possible collaboration

October 12, 2004 Invitation to Collaboration meeting with TelSoft

senior management [1]

November 17, 2004 IRB Approval for Protocol #H05176 “Managing

Requirements in Providing and Innovating

Software Services” [4]

November 19, 2004 First PST meeting

November 29, 2004 Diagnosing Phase begins: First diagnosing

interview of software development manager

Because the company attributed issues with its processes for discovering, managing, and

changing requirements, TelSoft‟s management initially requested that we focus on the

requirements engineering (RE) process. After receiving a verbal commitment from TelSoft,

several actions followed to firmly establish the project:

1. The research team drafted a project focus document [2] describing the improvement area

in more detail. This document is based upon concerns expressed by SC members at the

initial meeting.

2. The research team created a memorandum of understanding (MoU) [3] which served as

the researcher-client agreement (RCA) (Davison, Martinsons et al. 2004). The MoU

documents the roles of the SC and PST, clarifies the dual objectives of contributing to

research and practice, and provides an overview of project outcomes. The MoU was

refined and agreed to by TelSoft in November 2004.

3. I applied for and received Institutional Review Board (IRB) approval [4] for the research

study (#H05176).

4. The SC selected the TelSoft members of the PST. The first PST meeting was held on

November 19, 2004 to begin planning the diagnosing phase.

5. TelSoft provided electronic copies of the company‟s existing process documentation: 53

files consisting of templates, process flows, guidelines, and example usage. These

documents had been created during an earlier attempt to reach SW-CMM level 3 and had

remained largely unchanged.

www.manaraa.com

 163

Chapter 2: Diagnosing

The purpose of the diagnosing phase was to understand the current problems and practices within

the organization that may need changing. This section describes the data collected between

November 2004 and May 2005 to assess TelSoft‟s software practices from the viewpoint of

relevant stakeholders (see Table 2: Diagnosing Key Dates). At TelSoft, this effort involved 22

semi-structured interviews, two 3-hour workshops, a standardized assessment, and nearly a

dozen meetings of the problem solving and research teams.

Table 2: Diagnosing Key Dates

Date Activity

November 29, 2004 First diagnosing interview of software

development manager

January 19, 2005 Workshop: Software Development Problem

Diagnosis [6, 7]

January 19, 2005 New Division President announced

March 16, 2005 SC meeting: Interim Status and first contact with

new Division President

March 16, 2005 Workshop: Internal Customers Problem

Diagnosis [8, 9]

March 30, 2005 REGPG Assessment completed [11]

May 25, 2005 Last diagnosing interview with external customer

May 30, 2005 First draft of diagnostic report [11]

June 1, 2005 Intervention Cycle 1 begins: First PST meeting to

plan improvement strategy

In thinking about the diagnosing plan, the PST valued the context-specific judgments of the

TelSoft‟s employees and customers as well as the general insights that could be provided by

standardized assessment methods. To accommodate the desire for both perception-based and

process-based assessment, we developed an assessment framework that integrates the two

approaches. Our combined approach to RE assessment consists of three steps: initiating the

assessment, executing multiple inquiry cycles, and making recommendations based upon the

findings (Napier, Mathiassen et al. 2006).

www.manaraa.com

 164

Figure 1: Combined RE Assessment Approach

The assessment was organized as one process-based and three perception-based inquiries. During

this time, the PST met as needed (roughly once a month). At these meetings, the research team

would present initial findings and describe any issues that arose during data collection. The

TelSoft members of the PST identified representatives to be interviewed in each of the

stakeholder groups and facilitated creation of the group workshops.

For the process-based portion of the assessment, the research team selected the assessment from

the book Requirements Engineering: A Good Practice Guide (REGPG) (Sommerville and

Sawyer 1997). REGPG has been successfully used in both academia and industry. In addition,

the research team had access to a REGPG assessment tool (Sommerville and Ransom 2005) that

simplified data collection, provided process guidance, ensured accurate calculation of

requirements maturity, and automated report generation. The REGPG assessment was conducted

during a two hour meeting with members of the PST on March 30, 2005. Participants were

provided a written report containing a description of each of the 66 practices and expected

benefits to including the practice. Each relevant practice was read aloud and categorized as being

standardized, normalized, discretionary, or never followed. For questions the group did not feel

prepared to answer, they solicited response from appropriate people after the meeting. The

REGPG assessment identified TelSoft‟s strengths as being in the areas of documenting, eliciting,

and describing requirements [10]. Areas for improvement were in analyzing, validating, and

managing requirements. The company‟s overall RE maturity level was assessed at the lowest

level: initial.

The perception-based portion of the assessment was designed based upon my prior knowledge of

TelSoft. We identified three stakeholder groups involved in RE: software development, internal

customers, and external customers. The research team created interview guides [5] which asked

objective and subjective data on requirements-related documentation and activities that were

tailored for each stakeholder group. To ensure participant confidentiality, the research team took

www.manaraa.com

 165

responsibility for data collection and analysis, reporting results at an aggregate level. I was the

primary interviewer joined by either Dr. Johnson or Dr. Mathiassen where possible.

The first perception-based inquiry cycle focused on the software development group at TelSoft;

this group is responsible for interacting with clients to generate a software requirements

specification, creating the GIS software based upon these software requirements, evaluating the

impact of requirements changes, and ensuring the quality of the resulting software product. We

interviewed nine representatives from the software development group (see Table 3: Summary of

Diagnosing Interview Sources). The research team analyzed interviewees‟ responses for similar

themes. This analysis produced two key documents: a summary of TelSoft‟s actual requirements

process and a list of seventeen potential problem areas. On January 19, 2005, all members of the

software development group participated in a three-hour workshop to evaluate this list. For each

problem area, workshop participants individually provided an assessment of criticality,

feasibility, and priority. These individual responses were then debated and again prioritized in

break-out sessions during the workshop. A plenary session was then held in which

representatives from each of the break-out groups described their top issues. The primary

outcome from this cycle was a prioritized list of problem areas as perceived by the software

development group [7, 11].

Table 3: Summary of Diagnosing Interview Sources

Stakeholder Group Count Role

Software Development

Group

9 2 Development Managers

2 Project Managers

2 Software Engineers

2 Systems Analysts

1 Quality Assurance Analyst

Internal Customers 6 1 Liaison to Software Group

3 Project Managers

2 Sales Representatives

External Customers 7 6 Managers

1 Engineer

Total 22

The second inquiry cycle focused on the internal groups that interacted with the software

development group in generating and managing software requirements. The software

development group receives requirements from both the marketing organization and an internal

production group that uses its GIS software. Once the interviews were completed, the research

team again analyzed the interview data for common themes that suggested potential problem

areas. On March 16, 2005, the PST sponsored a workshop for validating and prioritizing the 14

identified problem areas. Workshop participants included those interviewed as well as other

users within the internal production group. The primary outcome from this cycle was a

prioritized list of problem areas as perceived by the internal customers [9, 11].

www.manaraa.com

 166

In the final perception-based inquiry cycle, we interviewed external customers who interacted

with TelSoft to generate software requirements, request requirements changes, and perform user

acceptance testing. The PST selected seven client representatives from three of TelSoft‟s long-

time customers. A new interview guide was created that asked about requirements

documentation, requirements management, and process innovation. In this cycle, there was no

workshop used as a discussion forum. The customers praised the TelSoft personnel for

understanding their business, responding promptly to customer requests, and adapting internal

practices to client‟s needs; however, they also identified areas for improvement (e.g. customer

relationship management, software release packaging procedures and documentation). The

primary outcome from this cycle was a list of strengths and areas for improvement [11].

The research team met to synthesize information from the four inquiry cycles. Although the

initial focus was on requirements management practices, the inquiry revealed broader issues that

prevented TelSoft from effectively satisfying its customers. In total, the research team identified

seven improvement areas: software vision management, project portfolio management, software

configuration management, customer relations management, requirements management, software

quality assurance, and end-user interaction (see Table 4: Identified Improvement Areas for

description). In light of these findings, we expanded our research interests to focus more broadly

on improving software practices.

Based upon the diagnosing data, we diagnosed TelSoft as lacking enterprise agility, the ability to

sense opportunities and respond as an intrinsic part of organizational practices (Overby et al.,

2006). Enterprise agility is related to existing literature streams on agility (Abrahamsson et al.,

2002; Borjesson and Mathiassen, 2005; Dove, 2001; Gunneson, 1997), alertness (Zaheer and

Zaheer, 1997), and adaptive enterprises (Haeckel, 1995; Haeckel, 1999). Sensing capability

refers to the organization‟s ability to recognize new business opportunities and technologies as

they appear and interpret the impact they might have for the organization (Overby et al., 2006).

TelSoft was unable to sense new opportunities; instead, the organization was dominated by old

ways of thinking. Responding capability refers to the organization‟s ability to act based upon the

information gathered (Overby et al., 2006). Even in those instances when TelSoft sensed the need

for change, they were not able to respond appropriately; they lacked the capability to effectively

adapt and innovate. Seen from the standpoint of sensing capability and responding capability,

TelSoft needed to combine the ability to sense customer needs and technological and market

opportunities while dynamically responding once aware of suitable opportunities. Based upon

this assessment, we recommended that TelSoft abandon strict command-and-control approaches

and use governing principles and defined roles to become a more adaptive enterprise (Haeckel,

1995). Principles from Haeckel‟s (1995; 1999) sense-and-respond model were chosen to address

this issue.

The research team documented these findings in a comprehensive Phase 1 Diagnostic Report

which was revised and approved by the PST [11]. The improvement strategy would be addressed

through a number of focused and dedicated project teams with clear success criteria and

specified deliverables. These project teams would be established, monitored, and coordinated

through the PST. The SC would be responsible for approving the overall plans for the

improvement.

www.manaraa.com

 167

The SC was kept informed of the PST‟s activities through periodic status meetings. It is

important to note that there were several personnel changes in the SC during this cycle. By the

end of Intervention Cycle 1, a new Division President was named. To introduce the new Division

President to the initiative, an interim presentation and report was provided on March 16, 2005.

The next SC meeting was held on June 9, 2005 to describe the findings and overall

recommendations moving forward. Within two weeks of this meeting, SC committed to the

improvement strategy and to further collaboration with the research team through December

2006.

Table 4: Identified Improvement Areas

Area Issues

1. Software vision

management

TelSoft strategy for software development and customer service

should be explicated, maintained, and communicated. This

provides a value-based foundation for requirements coordination

and management that is consistent with TelSoft‟ business strategy.

2. Project portfolio

management

TelSoft software project portfolio should be managed explicitly

and coordinated across internal and external stakeholders. This

creates the necessary dynamic capability to respond effectively to

different and emerging customer and innovation requests.

3. Software

configuration

management

TelSoft software configuration management should be improved

to ensure consistent and transparent modification and packaging

to individual customers. This ensures effective coordination with

customers and minimizes adverse effects across projects.

4. Customer relations

management

TelSoft should improve its management of customer relations to

ensure more symmetric information sharing and proactive

expectation and change management. This leads to increased

customer satisfaction.

5. Requirements

management

TelSoft must improve the transparency and consistency of

requirements change management as well as the approach to

specify requirements. This lead to improved efficiency,

transparency throughout the process, fewer errors, and increased

customer satisfaction.

6. Software Quality

assurance

TelSoft must build a consistent and systematic software quality

assurance process and commit people on all levels to adopt it.

This will lead to early detection of errors, improved efficiency,

and increased customer satisfaction.

7. End-user interaction TelSoft must establish closer interaction between software

development and end-users. This will lead to improved

understanding of requirements and to enhance change

management in collaboration with internal and external

customers.

www.manaraa.com

 168

Chapter 3: Intervention Cycle 1

The PST created two separate cycles of establishing and acting. This was done for several

reasons. First, the PST wanted to focus on quick, visible, high impact changes to reenergize the

organization‟s belief in the improvement initiative. There was a cynicism that existed from prior

SPI efforts, and we needed to combat that with immediate success. Second, our diagnosis had

revealed more problems than could be adequately addressed within a four to six month period.

Finally, following the CPR approach (Mathiassen 2002), we believed it was important to actively

involve as many people in planning as possible – preferably those that would be responsible for

implementing the new actions.

Between June 2005 and August 2005, the PST designed the first cycle of improvement teams

(see Table 5: Intervention Cycle 1 Key Dates). As before, the research team took the lead in

proposing project teams and prioritizing improvement areas. The research team iterated these

plans with the TelSoft members of the PST who also identified resources to work on the teams.

On September 1, 2005, the PST sponsored a kick-off meeting for all employees in the software

development group to present the diagnosing results and describe the upcoming project teams. At

the kick-off meeting, Dr. Mathiassen explained the need for a sense-and-respond approach to

improvement (Haeckel 1995) and the importance of governing principles. Furthermore, all

participants participated in breakout sessions to provide additional input to the proposed

improvement teams.

Table 5: Intervention Cycle 1 Key Dates

Date Activity

June 1, 2005 PST meeting to plan improvement teams

June 9, 2005 SC status meeting and discussion of project

continuation

Presented final Diagnostic Report [11]

September 1, 2005 Intervention Cycle 1 Kick-off Meeting [13]

October 7, 2005 Improvement team project plans due [14]

November 3, 2005 First Software Coordination Group (SCG)

Meeting [15]

SCG assumes responsibility for managerial

oversight of project

March 15, 2006 Interim status meeting for Software Development

managers [17]

March 21, 2006 Interim status meeting for Software Development

staff [17]

March 24, 2006 Deliverables from project teams due to PST [18,

19, 20, 21]

March 28, 2006 Finalized First Wave Report [23]

www.manaraa.com

 169

Date Activity

March 2006 Software Charter finalized and included on

customer mailings [16, 21]

April 18, 2006 Intervention Cycle 2 begins: Kick-off meeting

The five improvement teams formed for intervention cycle 1 (also known at TelSoft as the First

Wave) were software coordination, quality assurance, configuration management, customer

relations, and requirements management. The VP of Software Development advised team

members to spend no more than four hours every two weeks on the initiative. The PST provided

each team with an initial set of objectives and suggested activities based upon the diagnosing

stage. Their first task was to evaluate these suggested activities, make modifications, and create a

project plan. The teams typically met every two weeks to discuss new ways of operating that

would incorporate the suggested activities into TelSoft‟s processes. The VP of Software

Development directed the project managers to do the following:

 Use position papers as a working document insights, ideas, and proposed decisions

resulting from the groups activities.

 Generate brief, high-level process documents suitable for existing and potential

customers

 Provide simple templates that help people follow the processes described in the process

documents

In most cases, the project managers for the improvement teams created meeting minutes to

document key decisions. The research team decided to split up to support the teams. I would try

to attend and record all meetings for all the teams. Dr. Mathiassen would support the SCG and

requirements management teams. Dr. Johnson agreed to support the configuration management

and quality assurance teams. The improvement teams created a number of process documents,

position papers, and templates that were reviewed and approved by the PST. The key outcomes

for each of the project teams are briefly described below.

Software Coordination

The software coordination group (SCG) was established to address two improvement areas:

software vision management and project portfolio management. The SCG consisted of four

members: Division President, Vice President of Software Development, Software Development

Manager, and Product Manager. Beginning November 2005, the group met monthly and

followed a fixed agenda covering status of current projects, business opportunities, improvement

initiative, and strategy review. With the inclusion of the improvement initiative on its agenda, the

SCG now assumed the role of the SC. To raise awareness of customer relations issues, the SCG

periodically invited account managers to provide status on the customer relationship and identify

areas of improvement.

As suggested by the sense-and-respond model, the first item of business for the SCG was to

clarify the mission of the organization, their targeted markets, and governing principles (Haeckel

1995; Haeckel 1999). The following three items became TelSoft‟s Software Charter [16] and

have been shared with employees and customers.

www.manaraa.com

 170

 Reason for Being. The reason for being statement succinctly states the organization‟s

mission. The SCG members and CEO were asked to provide a candidate for the

division‟s reason for being by completing the following statement: TelSoft‟s software

division exists to……[fill in action, primary beneficiary, qualifiers, and outcome].” These

inputs were collected by the research team and discussed at the second and third SCG

meetings. After iteration and discussion, the SCG reached consensus.

 Software Strategy. The software strategy articulates the organization‟s main customers,

products, and development approach. As new business opportunities arise, the SCG can

use the software strategy to evaluate how closely those opportunities match.

 Policies. In general, policies are guiding principles identified by senior management to

guide decision-making and drive day-to-day operations (CMMI Product Team 2002). In

particular, software policies explicate the organization‟s governing principles for

successful software development. The improvement teams were each asked to propose no

more than 5 software policies – brief, enforceable rules stating desired practices that

TelSoft should adopt. These policies were consolidated by the PST, debated by software

development employees, and approved by the SCG.

Quality Assurance

The quality assurance team was designed to address the software quality assurance improvement

area. This team wrote position papers on desired standard operating procedures for certification,

regression, and acceptance testing. The team also developed a workflow that detailed the internal

testing process and produced templates for regression testing [18].

Configuration Management

The configuration management team was designed to address the software configuration

management improvement area. This team focused on improving the software release process by

ensuring the integrity of the software product which was built and delivered to customers. A key

decision here was that responsibility for building the software product would shift to the quality

assurance group; quality assurance would become the designated “gatekeeper” for products that

got sent to clients. The configuration management team developed a software release

specification template [20] for capturing information needed by the software quality assurance

department to create the final end product.

Customer Relations

The customer relations team was designed to address four improvement areas: customer relations

management, software quality assurance, software configuration management, and end-user

interaction. This team started with a lot of energy and ideas, but the project manager got

distracted with other work activities, leaving many of the initial plans for the group incomplete.

By February 2005, the decision was made to reduce the scope of the project and change project

managers. The key activity of the customer relations team was to communicate information

about the improvement initiative to the customers that participated in the diagnosing phase and

more broadly to TelSoft‟s customer base. This was accomplished through a letter sent by the

Division President which also included TelSoft‟s newly developed software charterSoftware

Charter. The group also responded directly to one of the specific customer comments from the

diagnosing phase by reinstituting weekly status reports to that client [16, 21].

www.manaraa.com

 171

Requirements Management

The requirements management team was designed to improve requirements management,

customer relations management, and configuration management. This team was also challenged

by problems with the project manager who was temporarily disabled from a car accident early

during the project. A replacement was not made, and the team‟s performance was negatively

impacted. This team simplified the functional specification to reduce the number of required

sections and created a change control template to be used for all changes to requirements [19].

By February 2006, the PST also recognized the need to better communicate status to the software

development group. Although the September 2005 kick-off meeting had engaged the larger

group, there had been no further communication about the improvement teams‟ progress, the

Software Charter, or existence of the SCG. To remedy this, I provided a 45-minute status update

[17] at the software development manager‟s meeting on March 15, 2006 and at the software

development staff meeting on March 21, 2006.

Lessons Learned

The PST produced the First Wave Summary Report [23] documenting accomplishments from the

first intervention cycle. The improvement teams had been asked to provide suggestions for what

should be focused on in the second intervention cycle and to provide implementation plans for

initiating the proposed actions. These reports made the members reflect upon how they could

improve going forward. The PST met on March 30, 2006 to finalize this report and plan the

second intervention cycle. The TelSoft members of the PST assessed the overall mood regarding

improvement to be positive for the employees that were actively involved. Some lessons learned

and decisions made:

 TelSoft‟s website would be updated with the software charterSoftware Charter as well as

a few high-level process documents [22].

 The PST needed to ensure there was a mechanism in place for monitoring and changing

the newly created templates and associated process documents.

 The SCG needed to focus more on executing the work outlined in the fixed agenda and

less on the mechanics of running the meeting (e.g. metrics provided by project

managers). A possible goal could be 90% execution and 10% mechanics. GSU

involvement in those meetings would continue for the next several months until such a

goal was met.

 The next intervention cycle would have fewer than five improvement teams to economize

on TelSoft‟s limited resources. During Intervention Cycle 1, increased coordination costs

were associated with having more teams. For instance, there was some overlap between

the work of the quality assurance and configuration management teams that required a

joint team meeting and several rounds of email to resolve.

 By February 2006, the PST also recognized the need to better communicate status to the

software development group. Although the September 2005 kick-off meeting had

engaged the larger group, there had been no further communication about the

improvement teams‟ progress, the Software Charter, or existence of the SCG. To remedy

this, I provided a 45-minute status update [17] at the software development manager‟s

meeting on March 15, 2006 and at the software development staff meeting on March 21,

2006.

www.manaraa.com

 172

By the end of Intervention Cycle 1, the composition of the PST changed. Dr. Roy Johnson left

the research team and the PST to accept a Fulbright Fellowship in South Africa. One of the

TelSoft managers on the PST had resigned while another had been fired. The VP of Software

Development appointed one of his direct reports to serve on the PST.

www.manaraa.com

 173

Chapter 4: Intervention Cycle 2

This section describes the activities at TelSoft between April 2006 and November 2006 to

continue making improvements (see Table 6: Intervention Cycle 2 Key Dates). The planning for

Intervention Cycle 2 was accomplished at two PST meetings (March 30, 2006 and April 5,

2006). The PST decided to form three improvement teams for Intervention Cycle 2 (also known

at TelSoft as the Second Wave): customer relations, quality results, and process management.

The first two teams continued work from teams in Intervention Cycle 1 while the last team was

formed to ensure that process documents would be effectively managed and communicated. On

April 18, 2006, the PST sponsored a Kick-off meeting for Intervention Cycle 2 [24]. The

objectives of the meeting were to describe key processes and templates created, identify

questions regarding the software policies, discuss how implementing these policies would impact

employees, and introduce the upcoming improvement teams. The Division President and VP of

Software Development played an active role in presenting the software charterSoftware Charter

and emphasizing that all employees should be considered “guardians of the policies.”

At the Kick-off meeting [24], the PST provided each team with an initial set of objectives and

suggested activities. As before, the first task for the project teams was to provide a draft project

plan to the PST by May 1, 2006 [25]. Building upon lessons learned from Intervention Cycle 1,

the original plan for Intervention Cycle 2 also included time for an interim status report to the

software development group; however, this was cancelled due to scheduling difficulties and the

pressing business needs at TelSoft. The project teams provided deliverables to the PST by

September 29, 2006 for review [26, 27, 28, 29]. The PST met to review materials and provide

feedback to the teams. The completion meeting to close Intervention Cycle 2 was held on

November 8, 2006 [31].

Table 6: Intervention Cycle 2 Key Dates

Date Activity

April 18, 2006 Intervention Cycle 2 Kick-off Meeting [24]

May 1, 2006 Project plans due to PST [25]

July 12, 2006 Planned interim status meeting (Cancelled)

September 29, 2006 Deliverables from project teams due to PST [26,

27, 28, 29]

October 17, 2006 Second Wave Report finalized [30]

November 8, 2006 Learning Phase begins: Intervention Cycle 2

Completion Meeting

Below, the key outcomes for each of the project teams are briefly described.

Quality Results

Recognizing the overlap in Intervention Cycle 1 between the configuration management and

quality assurance teams, the PST decided to combine these efforts during Intervention Cycle 2.

This decision had the added benefit of reducing the number of teams which needed to be

www.manaraa.com

 174

managed. The project manager for the quality results team was also the manager of the quality

assurance group. The resulting quality results team identified new procedures to enhance internal

processes for the software quality assurance unit. More specifically, the group developed

guidelines for conducting post-project analysis to determine root cause of problems, cleaning up

the software defect database, and improving the efficiency of the regression testing [27].

Customer Relations

The customer relations team was revived during Intervention Cycle 2 by the appointment of a

new project manager and an expanded list of members, including the Division President,

marketing representative, and customer support personnel. The goals of the team included

maintaining contact information for customers and prospects, improving the image of TelSoft

through customer deliverables, and increasing TelSoft‟s presence with the customer. By the end

of Intervention Cycle 2, the group had agreed to purchase contact management software for sales

representatives and management, redesigned the packaging for software releases, and developed

guidelines for engaging customers from the proposal through the deployment stage [28].

Process Management

The process management team was the only new team formed during Intervention Cycle 2, and it

included employees that had not been active on improvement teams during Intervention Cycle 1.

The team‟s project manager was a member of the software quality assurance group with

extensive experience leading projects. The team members included a marketing representative,

the software quality assurance department‟s manager, a software developer, and a customer

support representative who was also responsible for updating TelSoft‟s website. By the end of

Intervention Cycle 2, the group had accomplished the following goals [26]:

 Updated TelSoft‟s website to reflect the most useful information about processes and

templates

 Evaluate all existing processes in relation to future use at TelSoft

 Created standards for templates and reviewed newly created templates in light of these

standards

 Create a plan for process management to be integrated into the software quality

assurance department by the end of Intervention Cycle 2. This plan included a fixed

agenda for the PST which included oversight of the process management process [29].

www.manaraa.com

 175

Chapter 5: Learning

This section describes the activities at TelSoft between December 2006 and March 2007 to

reflected on the impact of the overall change process and assess outcomes (see Table 7: Learning

Key Dates). The final assessment of the SPI initiative was designed using the Combined RE

assessment framework (Napier, Mathiassen et al. 2006) with a focus on evaluating SPI impact,

organization, and perceptions. Concerning SPI impact, our goal was to identify changes in each

of the seven improvement areas, the effect of the software policies on day-to-day practice,

challenges that occurred in enacting changes, and suggestions for improvement. Concerning the

SPI organization, our goal was to assess how effectively the PST, SCG, and improvement teams

had managed the SPI effort. Finally, concerning SPI perception, our goal was to determine how

different stakeholders perceived the overall value of the SPI effort, their satisfaction with their

own level of involvement, and the usefulness of communication methods used.

Table 7: Learning Key Dates

Date Activity

December 19, 2006 Assessment Interviews begin

February 25, 2007 Assessment Interviews end

March 20, 2007 Completed administration of employee online

questionnaire regarding SPI impact

June 19, 2007 Requirements Engineering Assessment completed

The final assessment of the SPI initiative was designed using the Combined RE assessment

framework (Napier, Mathiassen et al. 2006) with a focus on evaluating SPI impact, organization,

and perceptions. Concerning SPI impact, our goal was to identify changes in each of the seven

improvement areas, the effect of the software policies on day-to-day practice, challenges that

occurred in enacting changes, and suggestions for improvement. Concerning the SPI

organization, our goal was to assess how effectively the PST, SCG, and improvement teams had

managed the SPI effort. Finally, concerning SPI perception, our goal was to determine how

different stakeholders perceived the overall value of the SPI effort, their satisfaction with their

own level of involvement, and the usefulness of communication methods used. The resulting

assessment plan consisted of two perception-based (interviews and questionnaire) and one

process-based (REGPG assessment). We identified four major stakeholder groups: customers,

improvement team participants, SPI leadership (SCG & PST), and other software development

employees. Table 8 shows the method and content of the inquiry for each stakeholder group.

www.manaraa.com

 176

Table 8: Stakeholder-based View of Learning Assessment

Inquiry

Content

Inquiry

Method
Customers

Improvement

Team

participants

SPI

Leadership

Software

Development

employees

SPI Impact Interview

Questionnaire

REGPG

Yes Yes Yes Yes

SPI

Organization

Interview
No Yes Yes No

SPI

Perception

Questionnaire

Interview
Yes Yes Yes Yes

The first perception-based inquiry cycle was based upon ten semi-structured interviews. An

interview guide was created based upon the objectives of evaluating SPI impact, SPI

organization, and SPI perceptions [32]. Three representatives from two external customers

consented to phone interviews. Since a questionnaire would be sent to all employees, the PST

selected only seven employees for face-to-face interviews: five managers involved in the PST

and SCG plus two developers who had actively participated on improvement teams. Each

interview lasted roughly 45 minutes, was audibly recorded, and was later transcribed. The

findings were compiled into multiple reports and shared at various levels throughout the

organization. The summary of external customer interviews [34] was provided to the PST as well

as the primary customer liaison at TelSoft. The comments regarding the SCG were presented in

an assessment report [35] and discussed during the March 2007 SCG meeting. Other interview

comments were combined with data from the questionnaire (described next) as part of an overall

SPI impact report [36].

The second inquiry cycle was based on an online questionnaire [33] sent to twenty-five TelSoft

employees who either reported to the VP of Software Development or had otherwise been

involved in the SPI effort. The content of the questionnaire was first created by the research team

and then refined and piloted by the PST. The questionnaire asked each individual to assess the

impact of the overall initiative, the software policies, and the modified processes and templates.

In addition, several open-ended questions allowed the respondent to provide additional detail to

explain their answers. Data from the questionnaire played a key role in the overall SPI impact

report [36].

The third inquiry cycle relied on the REGPG assessment. The assessment was completed by the

VP of Software Development and the QA manager on June 19, 2007, and the assessment results

were compared against those from the diagnosing phase [37].

An overall assessment of the usefulness of the initiative has been summarized in Part I, Section

5.2. For detailed results from this phase, see the full text of the following assessment reports in

Appendix B:

 B.11 SPI Impact Results Summary

 B.12 Requirements Engineering Assessment Results

www.manaraa.com

 177

Appendix A: Comprehensive List of Problem Solving Documents

ID Title Date Authors Description

 Initiating Phase

1. Invitation to

collaboration slides

10/10/2004 Research

team

Introduces the research team

members, expected project

outcomes, and suggested

collaboration structure.

2. Project focus document 11/17/2004 Research

team

Describes the initial focus of the

research based upon concerns of the

steering committee.

3. Memorandum of

understanding (MoU)

11/1/2004 Research

team

Serves as Researcher-client

agreement. Documents the roles of

steering committee, problem solving

team, and researchers.

(Full text in Appendix B.1)

4. Institutional Review

Board approval

(#H05176)

11/17/2004 Napier Provides approval for use of human

subjects in research and informed

consent form.

(Full text in Appendix B.2)

 Diagnosing Phase

5. Diagnosis interview

guides

12/1/2004 Research

team

Guides developed for leading the

initial assessment with software

development, internal customers,

and external customers.

(Full text in Appendix B.3)

6. Software development

workshop preparation

materials

1/19/2005 Research

team

Materials provided consisted of:

Agenda, Requirements process

comparison summary, list of

potential problem areas based upon

software development interviews

7. Software development

problem diagnosis final

workshop report

2/16/2005 Research

team

Summarized responses from

workshop regarding prioritized

problems.

8. Internal customers

problem diagnosis

workshop preparation

materials

3/16/2005 PST Materials provided consisted of:

Agenda, list of potential problem

areas based upon internal customer

interviews

9. Internal customers

problem diagnosis final

workshop report

3/16/2005 Research

team

Summarized responses from

workshop regarding prioritized

problems.

www.manaraa.com

 178

ID Title Date Authors Description

10. Requirements

engineering process

assessment results –

initial

3/30/2005 Research

team

Results of performing the REGPG

assessment.

 Intervention Cycle 1

11. Phase 1 final diagnostic

report

6/9/2005 PST Summary diagnosis of software

practices from various viewpoints:

software development, internal

customers, external customers, and

REGPG assessment.

(Full text in Appendix B.4)

12. Phase 1 summary slides 6/9/2005 PST Slides presented to SC identifying

problems found and suggested

interventions

13. First Wave Kick-off

Meeting Preparation

Materials

9/1/2005 PST Agenda, slides, summarizing [11],

assigning improvement teams,

presenting sense-and-respond

model, and 2 Haeckel papers

14. First Wave Project

Plans

10/7/2005 Improvement

teams

Goals and schedule for the five First

Wave improvement teams: quality

assurance, configuration

management, requirements

management, customer relations,

and software coordination

15. SCG Fixed Agenda 11/2005 SCG Fixed agenda defined to guide SCG

meetings. Topics covered included

current projects, business

opportunities, improvement

initiative, and strategy review.

(Full text in Appendix B.6)

16. Software charter 3/2006 SCG Reason for Being, Software

Strategy, Policies

(Full text in Appendix B.5)

17. Interim status meeting

summary slides

3/15/2006 PST During this meeting, the Software

Charter was announced, status was

provided on implementation of

Wave 1 activities, and tentative

plans for Wave 2 were discussed

www.manaraa.com

 179

ID Title Date Authors Description

18. First wave deliverables

– Quality assurance

team

3/28/2006 Improvement

team

Position papers:

 Maintain stability level

 Client data

 Enforce standard operating

procedures

Process document: QA workflow

Template: Regression Checklist

19. First Wave deliverables

– Requirements

management team

3/28/2006 Improvement

team

Revised templates:

 Functional specification

 Change control

20. First Wave deliverables

– Configuration

management team

3/28/2006 Improvement

team

Position papers:

 Document Release Differences

 QA Executes Builds

 Software Release Specification

Process documents:

 Development and Quality

Assurance workflow

 Software Release Specification

 Document Release Differences

 QA Executes Builds

Templates

 Impact Statement

 Software Release Specification

21. First Wave deliverables

– Customer relations

team

3/28/2006 Improvement

team

Letter about improvement initiative

to customers

22. Prototype TelSoft

website with policies

3/28/2006 PST Created web pages with content

from the Software Charter as well as

example documents showing how

TelSoft supports each policy

23. First Wave summary

report

3/28/2006 PST Compilation of the results from each

of the improvement teams, proposed

implementation plans for First

Wave, and suggested activities for

Second Wave

 Intervention Cycle 2

24. Second Wave kick-off

meeting preparation

materials

4/18/2006 PST Agenda, slides, First Wave

processes and templates, Software

Charter, description of Second Wave

activities

25. Second Wave project

plans

5/1/2006 Improvement

teams

Goals and schedule for the three

Second Wave improvement teams:

quality results, customer relations,

and process management

www.manaraa.com

 180

ID Title Date Authors Description

26. Second Wave

deliverables – Process

management team

9/29/2006 Improvement

teams

27. Second Wave

deliverables – Quality

results team

9/29/2006 Improvement

teams

Position papers:

 PDPR Database Cleanup

 QA Archiving of builds and

releases

 Improve efficiency of QA

department

 Post Release Quality Review

Process documents:

 PDPR database cleanup

 Improve efficiency of QA

department

 QA archiving of builds and

releases

 Post release quality review

28. Second Wave

deliverables –

Customer relations

team

9/29/2006 Improvement

teams

Policy Statement:

 TelSoft Email Correspondence

Policy Statement

Guidelines:

 Proposals to Include

Deployment Support

 Deliver Proposals with a

Presentation

 Management Discussion Points

 Customer Engagement

29. PST Fixed agenda 9/29/2006 PST Full text in Appendix B.7

30. Second Wave final

report

10/17/2006 PST Full text in Appendix B.8

 Learning Phase

31. Completion meeting:

“Process Improvement:

Status & Plans”

11/8/2006 PST Agenda, improvement team reports

from Second Wave

32. Learning interview

guide

12/19/2006 Research

team

Full text in Appendix B.10

33. SPI impact

questionnaire

1/15/2007 Research

team

Full text in Appendix B.9

34. External customer

interview summaries

1/25/2007 Research

team

Summary of comments from

customer interviews (2 from Far

Telco, 1 value-added reseller)

35. SCG assessment report 1/23/2007 Research

team

Summarized strengths and

improvement opportunities based

upon interviews with SCG members

www.manaraa.com

 181

ID Title Date Authors Description

36. SPI Impact results

report

4/18/2007 Research

team

Full text in Appendix B.11

37. Requirements

Engineering

Assessment results

7/17/2007 Research

team

Full text in Appendix B.12

www.manaraa.com

 182

Appendix B: Problem Solving Cycle Documentation

B.1: Memorandum of Understanding ... 183

B.2: Institutional Review Board Approval #H05176 ... 188

B.3: Diagnosing Interview Guide ... 190

B.4: Phase 1 Diagnostic Report .. 192

B.5: Software Charter ... 221

B.6: Software Coordination Group Fixed Agenda ... 222

B.7: Problem Solving Team Fixed Agenda .. 225

B.8: Second Wave Summary Report .. 228

B.9: Employee Survey .. 238

B.10: Learning Interview Guide ... 242

B.11: SPI Impact Results Summary.. 244

B.12: Requirements Engineering Assessment Results ... 255

www.manaraa.com

 183

B.1: Memorandum of Understanding
November 1st 2004

The purpose of this Memorandum of Understanding (MoU) is to describe the agreed upon content,

structure, and approach to Research & Development (R&D) collaboration between TelSoft and

Center for Process Innovation, Georgia State University (CEPRIN).

Theme
The theme is “Managing Requirements in Providing and Innovating Software Services at TelSoft

Engineering”. This includes management of requirements from internal as well as external

stakeholders and relates to both Legacy Group and Division software. The collaboration will address

the following tasks:

1. Model and assess TelSoft‟s existing practices and tools as they are applied to requirements

elicitation, analysis, documentation and management.

2. Describe all key sources of requirements, the interests of the involved stakeholders, and the

different ways in which new requirements are negotiated and used as the basis to define the

scope of development projects.

3. Describe existing practices and tools used to continuously manage the scope of projects by

tracing project activities and product functionality to the requirements of the project.

4. Identify strengths and weaknesses in current requirements practices as well as opportunities for

improvement. Generate new or changed process documentation to assist TelSoft future

requirements management efforts. (i.e., checklist to identify issues that must be considered and

scoped such as client dependencies, assumptions, risk, IP considerations, computing

environment, etc)

5. Implement and assess selected improvements in requirements management practices.

Objectives
The collaboration has the double objective of:

1) Improving the quality and productivity of software services at TelSoft through enhanced

requirements management practices;

2) Contributing to research into software requirements management.

Approach
The collaboration proceeds in a stepwise, iterative fashion based on the approach described in the

IDEAL model:

www.manaraa.com

B.1 Memorandum of Understanding 184

Stimulus for
improvement

Set context &
Establish

sponsorship

Establish

infra-
structure

Appraise &
Characterize

current process

Develop recommendations

& Document results

Set strategy &
Priorities

Establish

process action
teams & Action

plans

Define processes & measures

Plan & Execute pilots
Plan. Execute, & Track installation

Document &

Analyze lessons

Revise

organizational
approach

INITIATING

DIAGNO-
SING

ESTABLISH-
MENT

ACTING
LEARNING

The following steps are planned with contents, deliverables, and estimated duration as indicated:

Step Contents Deliverables
Estimated

Duration

ID Initiate collaboration

 Diagnose current practices

 Model of current practices

 Map of key stakeholders and

interactions

 Assessment of strengths,

weaknesses and opportunities

4 months

EAL Prioritize improvements

 Develop and implement new

practice

 Identify key lessons

 Plan for improvement project

 Implemented improvement

 Lessons from project

6 months

DEAL Update diagnosis

 Prioritize improvements

 Develop and implement new

practice

 Identify key lessons

 Updated models and maps

 Re-assessment of strengths,

weaknesses and opportunities

 Plan for improvement project

 Implemented improvement

 Lessons from project

6 months

DEAL Update diagnosis

 Prioritize improvements

 Develop and implement new

practice

 Identify key lessons

 Updated models and maps

 Re-assessment of strengths,

weaknesses and opportunities

 Plan for improvement project

 Implemented improvement

 Lessons from project

6 months

TelSoft and CEPRIN can independently decide to stop the R&D collaboration after each step.

www.manaraa.com

B.1 Memorandum of Understanding 185

Management
The R&D collaboration is managed by a joint SC (SC) with representatives from TelSoft and Lars

Mathiassen, Nannette Napier and Roy Johnson representing CEPRIN. Lars Mathiassen coordinates

SC meetings to take place 2-4 times a year as needed.

Plan
Step 1 is carried out by a joint problem solving team (PST) consisting of

 EH, TelSoft.

 VR, TelSoft.

 MB, TelSoft.

 Nannette Napier, CEPRIN.

 Lars Mathiassen, CEPRIN.

 Roy Johnson, CEPRIN.

The PST is coordinated by EH and Nannette Napier and it meets routinely every month. Problem

solving activities will take place at and between group meetings.

The detailed plan for Step 1 is as follows:

Start Date
Proposed

Duration
Activities Personnel

November 1 4 weeks Software Provider View:

Understand, analyze, and document

requirements management practices at

TelSoft

Gather Information

 Collect and review written

documentation of practices.

 Interview key players at TelSoft

regarding the “As-is” process.

 Identify key issues related to

requirements management from

the perspective of TelSoft

Napier with TelSoft

personnel

Late

November

 Workshop #1: Present initial findings

and strategize as a group

 Have we accurately captured

practices and key issues?

 Which directions and priorities are

suggested for further exploration?

PST and

representatives from

Legacy Group and

Division

www.manaraa.com

B.1 Memorandum of Understanding 186

Start Date
Proposed

Duration
Activities Personnel

Late

November –

December

4 weeks Internal Software Customer View:

Understand how requirements are

generated and negotiated

Gather Information

 Review written documentation on

requirements generation and

negotiation.

 Interview internal software

customers about the “As-is”

process.

 Identify key issues related to

requirements management from

the perspective of internal software

customers.

Napier with TelSoft

personnel

Late

December

 Workshop #2: Present initial findings

and strategize as a group

 Have we accurately captured

practices and key issues?

 Which directions and priorities are

suggested for further exploration?

PST and

representatives from

Legacy Group,

Division, and internal

customers

January 1 –

February 1

4 weeks External Software Customer View:

Understand how requirements are

generated and negotiated

Gather Information

 Review written documentation on

requirements generation and

negotiation.

 Interview selected external

software customers about the “As-

is” process. (Note: We may elect

not to involve and external

customer. This is TBD.)

 Identify key issues related to

requirements management from

the perspective of external

software customers.

Napier with TelSoft

personnel

Late January Workshop #3: Present Information and

Strategize as a group

 Have we accurately captured

practices and key issues?

 Which directions and priorities are

suggested for further exploration?

PST and

representatives from

Legacy Group,

Division, and

external customers

www.manaraa.com

B.1 Memorandum of Understanding 187

Start Date
Proposed

Duration
Activities Personnel

February 1 –

28

4 weeks Identify and describe possible

improvements.

 Develop all deliverables from Step

1.

 Capture learning.

PST

March 1 Workshop # 4: Debate results of Step

1 and outline plans for Step 2.

PST-SC

Commitments
The R&D collaboration is based on the following commitments:

 CEPRIN

o Help improve requirements management practices at TelSoft.

o Coordinate SC.

o Develop research contributions based on findings from TelSoft.

o Provide resources to Research Team (Lars Mathiassen, Nannette Napier, and Roy

Johnson).

 TelSoft

o Commit to improving requirements management practices.

o Provide Research Team access to and cooperation with TelSoft employees.

o Provide resources for TelSoft participants in PST.

o Participate in SC.

o Provide CEPRIN with funding each quarter of the R&D collaboration starting October

2004. The funding is provided to support CEPRIN through the GSU Foundation.

www.manaraa.com

 188

B.2: Institutional Review Board Approval #H05176

www.manaraa.com

B.2 IRB Approval 189

www.manaraa.com

 190

B.3: Diagnosing Interview Guide

Development group
The following guide was used for the TelSoft personnel who developed software or offered

support to the software development process. Your personal view and role regarding the

following:

Table 1: Development Group Diagnosing Interview Guide

Requirements Documents Requirements Activities

 Which?

 Inputs to you?

 Contributions?

 Output to whom?

 Which?

 Interactions?

 Collaboration?

 Resources?

 Strengths

 Weaknesses

 Opportunities

 Strengths

 Weaknesses

 Opportunities

Internal customers
The following guide was used for the TelSoft personnel who used the software as a production

tool. Your personal view and role regarding the following:

Table 2: Data Services Diagnosing Interview Guide

Requirements Activities Requirements Management

 Sources and triggering events?

 Who do you interact with?

 What forms of interaction?

 Extent of collaboration with contact?

 How are requirements documented?

 How are requirements negotiated and

decided?

 How are requirements changed?

 How do you validate deliverables?

 Strengths

 Weaknesses

 Opportunities

 Strengths

 Weaknesses

 Opportunities

www.manaraa.com

B.3 Diagnosing Guide 191

The following guide was used for the TelSoft personnel supporting sales and marketing.

Your personal view and role regarding the following:

Table 3: Marketing Diagnosing Interview Guide

Product Management Product Innovation

 How do you assess market demands?

 How do you identify potential

customers?

 How do you assess product potential?

 How do you process feedback from

customers?

 How do you identify innovations?

 How are innovations documented?

 How are innovations communicated?

 Who do you collaborate with and

how?

 Strengths

 Weaknesses

 Opportunities

 Strengths

 Weaknesses

 Opportunities

Additional questions: How difficult/easy is it to sell TelSoft products? Is the market receptive?

External customers
Your personal view and role regarding the following:

Table 4: External Customer Diagnosing Interview Guide

Requirements Activities Documents
Requirements

Management
Process Innovation

 Who do you

interact with at

TelSoft?

 What forms of

interaction?

 How are

requirements

documented?

 How do you

validate documents

from TelSoft?

 How are

requirements

negotiated and

decided?

 How are

requirements

changed?

 How well has

TelSoft responded

to process changes?

 Strengths

 Weaknesses

 Opportunities

 Strengths

 Weaknesses

 Opportunities

 Strengths

 Weaknesses

 Opportunities

 Strengths

 Weaknesses

 Opportunities

Additional questions: What is your role at the company? How long have you worked with

TelSoft? Given the many competitors, why do you continue to work with TelSoft? How would

you evaluate the current quality or “state of the art” of TelSoft software?

www.manaraa.com

 192

B.4: Phase 1 Diagnostic Report

Executive Summary
The theme is “Managing Requirements in Providing and Innovating Software Services at

TelSoft”. This includes management of requirements from internal as well as external

stakeholders.

The collaboration began in October 2004 with an overall plan described in the Memorandum of

Understanding. This report summarizes the results of Step 1: the Initiating and Diagnosing

phases of the IDEAL model. The following objectives were addressed during Step 1:

1. Model and assess TelSoft‟s existing practices and tools as they are applied to

requirements elicitation, analysis, documentation and management.

2. Describe all key sources of requirements, the interests of the involved stakeholders, and

the different ways in which new requirements are negotiated and used as the basis to

define the scope of development projects.

3. Identify strengths and weaknesses in current requirements practices as well as

opportunities for improvement.

The assessment has identified many strengths, weaknesses, and opportunities related to

requirements management at TelSoft. These relate to:

 identification, negotiation, validation, implementation and change of requirements,

 software development, internal customers, as well as external customers,

 resources, approaches, and values in requirements practices,

 operational as well as managerial aspects of requirements practices and

 architecture of the software as well as configuration of the processes.

A feasible approach to turning these insights into improved requirements practices must:

 Align with TelSoft‟ priorities, traditions, and culture,

 Build on a comprehensive and systemic view of the above aspects of requirements

practices,

 Take advantage of possible short-term improvements that can help move requirements

practices, and software practices in general, towards higher performance and better

customer service, and

 Build sustainable levels of improved practices through appropriate sequencing of efforts.

www.manaraa.com

B.4 Phase 1 Diagnostic Report 193

The following table summarizes potential ideas for action recommended to the Steering

Committee:

Table 1: Potential Ideas (arranged by Project)

Description Investment

Software Coordination – First Wave

Communicate vision: Management team communicates face-to-face the

long-term vision for TelSoft software – both internally and externally.

This should be followed by periodic revisions and progress reports as the

organization moves towards these goals.

Low

Publicize commitment: Publicize the reports from Phase 1 of this project.

Communicate key findings and how TelSoft plans to address the major

problems. Describe level of commitment to Software Process

Improvement.

Low

Establish Software Coordination Group: Establish a Software

Coordination Group that takes the overall responsibility for making

priorities, allocating resources, and monitoring TelSoft project portfolio.

Low

Software Coordination – Second Wave

Enhance tools: Enhance TelSoft‟s suite of tools and processes for project

portfolio management.

Medium

Quality Assurance – First Wave

Borrow qualified resources: Borrow 2-3 Data Services operators to work

in QA for a specific period of time or to help with a specific release.

Low

Mandate stability period before shipment: Implement a mandatory stability

period between the time a software package is created and the time it is

sent to customers.

Low

Create accumulated checklist for testing: Update testing scripts to exploit

lessons learned from other projects. This prevents old problems from

creeping into the software again.

Medium

Enforce Standard Operating Procedures: Prioritize a minimal set of

standard operating procedures for QA and enforce them. One rule might

be to test all changes – particularly core code changes – in all

configurations.

Medium

Quality Assurance – Second Wave

Analyze root cause: Determine and address root cause of why customer

deadlines are not met.

Medium

Use a formal process: Use a formal process for eliminating errors (e.g.

Requirements standards assessment, Six Sigma)

High

Customer Relations – First Wave

Publicize action plan: Communicate to external customers interviewed

how Phase 1 issues will be addressed.

Low

Standardize TelSoft-Far Telco email interaction: Address Far Telco‟s

specific concerns regarding TelSoft‟ email interaction. Clarify their

preferred format for documents and ensure that TelSoft personnel

consistently use this format.

Low

www.manaraa.com

B.4 Phase 1 Diagnostic Report 194

Description Investment

Offer FMT training with every release to Far Telco Low

Weekly conference call with decision makers Low

Prioritize next Local Telco release: Allocate required resources for Quality

Assurance and Configuration Management for the next Local Telco

release to minimize errors and rebuild client trust.

Medium

Visit end-user after deployment: Plan to visit end-users to understand and

address their concerns about 1-2 weeks after deployment of each release.

Medium

Customer Relations – Second Wave

Solicit end-user input: Solicit input from end users at Far Telco, Local

Telco, or Data Services. Create list of enhancements from these visits.

Create proposal to address these needs.

Medium

Formalize account executive role: Formalize account executive role and

responsibilities for each key customer to drive enhanced customer

relationship management.

Medium

Understand client‟s business processes: Solicit more information on

customer‟s business processes and systems to understand where TelSoft‟

software fits now and in the future.

Configuration Management – First Wave

Utilize software release checklist: Generate checklist for building a

software release. Ensure that the correct process is consistently followed.

Low

Generate report on differences from previous release: Generate a report

with each release that shows the differences between the client‟s

production version and the new release. Use for input to the Release Notes

and Quality Assurance test plans.

Low

Configuration Management – Second Wave

Restrict core code changes: Place tighter restrictions on changes to the

Core Code (e.g. infrequently scheduled release dates, extensive time for

regression test plans, high visibility of changes).

Medium

Upgrade configuration management tools and processes: Systematically

review and update TelSoft‟ tools and processes for configuration

management.

High

Requirements Management – First Wave

Enforce change management practices: Review and update change

management practices for each key customer and make sure they are

followed.

Low

Better review of Requirements Documents: Spend more time thoroughly

reviewing requirements documents during the design phase. This may

also involve getting “the right” people involved in the review.

Low

Requirements Management – Second Wave

Establish traceability between requirements and design documents: In the

design documents, clearly list which requirements are being satisfied by

each part of the design.

Medium

www.manaraa.com

B.4 Phase 1 Diagnostic Report 195

Description Investment

Enforce Standard Operating Procedures: Identify the set of tools and

processes for change management and enforce them as standard operating

procedures across all projects.

Medium

Upgrade configuration management tools and processes: Adopt a standard

process with state-of-the-art tools for configuration management

High

www.manaraa.com

B.4 Phase 1 Diagnostic Report 196

Software Development View

The following section provides conclusions from the Requirements Management Workshop held

January 19
th

, 9:30 am – 1:00 pm.

Participants: <Names withheld>

Workshop Process:
 Participants corrected the “Requirements Process Comparison” chart.

 Lars explained the list of “Potential Problem Areas.” Participants added 5 new issues to

the list.

 Participants individually assessed each issue on Criticality and Feasibility.

 Participants individually assigned a priority to (at least) the top 5 issues. The highest

priority issue was assigned a value of 1.

 Participants were divided into predetermined groups to discuss the issues. The group

reached consensus on the top priority issues.

 All participants met to share group findings.

Report Contents

 Complete list of Potential Problem Areas

 Top Issues

 Top Issues by Role

 Software Development Model of Issues

Complete list of Potential Problem Areas

After all interviews were completed, the Research Team (Nannette, Lars, and Roy) created a list

of “Potential Problems” (issues 1 through 12 below). During the workshop, each “Potential

Problem” was described. Participants added five additional problems to the list. Participants

provided an individual assessment of

 Criticality – How important is it to solve this problem? (1=irrelevant, 2=maybe useful,

3=useful, 4=very useful, 5=critical)

 Feasibility – How feasible is it to solve this problem? (1=impossible, 2=difficult,

3=possible, 4=easy, 5=no problem)

 Priority – What are the top problems that should be addressed?

Participants were divided into three predetermined groups to discuss the issues. The group

reached consensus on the top priority issues.

Table 2 summarizes the data collected during this process.

 Description: Complete text of the “Potential Problem” as shown to the workshop

participants

 Occurrence in Group Top Five: Number of times a group prioritized this as a top five

problem

www.manaraa.com

B.4 Phase 1 Diagnostic Report 197

 Occurrence in Individual Top Five: Number of times an individual prioritized this as a

top five problem

 Average Criticality: Average criticality score assigned to this problem by individuals

 Average Feasibility: Average feasibility score assigned this problem by individuals

Table 2: Potential Problems: Software Development View

ID Description

Count in

Group Top

Five

Count in

Individual

Top Five

Average

Criticality

Average

Feasibility

1

Customer Variation

There are considerable

variations in requirements

management and quality

assurance practices across

customers; innovations are

driven by customers or ad-

hoc initiatives; these

innovations are not prioritized

or coordinated.

0 2 2.69 1.85

2

Process vs. Practice

TelSoft described

requirements management

process is considerably

different from practices; the

ongoing maintenance and

innovation of the described

processes is not

institutionalized.

0 2 3.54 2.46

3

QA Disintegration

Quality assurance practices

are insufficiently integrated

with development practices;

quality assurance is more like

a formal administrative

procedure than a facilitator of

requirements and software

quality.

3 9 3.92 2.85

www.manaraa.com

B.4 Phase 1 Diagnostic Report 198

ID Description

Count in

Group Top

Five

Count in

Individual

Top Five

Average

Criticality

Average

Feasibility

4

Documentation Standards

Documentation standards are

practices vary; there are

considerable variations in

style and level of detail across

authors; the most appropriate

documentation form is not

necessarily chosen to

effectively target

documentation users; some

documentation standards do

not fit current needs.

1 4 2.92 2.46

5

Change Management

Requirements changes are not

addressed in a systematic

fashion; documents are as a

result not kept updated and

consistent; these practices

create problems for some

stakeholders.

2 8 3.62 2.92

6

Centralized vs. Decentralized

Key activities are centralized

or decentralized in

questionable ways;

requirements identification

and approval is in some cases

highly centralized; allocation

of resources is decentralized.

0 1 1.62 3.54

7

Customer-driven innovation

Software product innovation

and development is driven by

customer requests in a rather

ad-hoc fashion; this practice

threatens the long-term

market value of Byes

software products.

2 5 3.19 2.15

8

Outdated tools

Tools and methodologies for

requirements management are

not state-of-the art; there are

no procedures or

responsibilities in place to

facilitate improvements.

0 3 3.12 3.17

www.manaraa.com

B.4 Phase 1 Diagnostic Report 199

ID Description

Count in

Group Top

Five

Count in

Individual

Top Five

Average

Criticality

Average

Feasibility

9

Inconsistent Signoff

Sign-off of requirements

happen in many different

ways both in relation to

customers and internally at

TelSoft.

0 1 2.42 2.58

10

No Req. Baseline

No commonly agreed

baseline of requirements is

established, documented or

maintained to help coordinate

implementation efforts and

assess and manage changes.

1 3 2.12 3.69

11

Ad Hoc Review

Review of requirements is

often performed in ad-hoc

fashion where reviewers are

unprepared and critique is not

systematically fed back into

the requirements process.

2 7 3.96 2.81

12

Avoid Confrontation

Conflicts related to

requirements implementation

and quality are often avoided

rather than used as basis for

innovation.

0 3 3.23 2.54

13

Lack Time

There is not enough time to

do a good job in software

development (time)

1 9 3.96 1.92

14

Resource Allocation

QA, core development have

difficulties in prioritizing

tasks and requests across

projects (resources)

1 6 3.77 2.35

15

BA SW Access

BA become involved in

requirements tasks where

they don‟t know or have

access to the software

(training)

1 4 3.75 3.75

www.manaraa.com

B.4 Phase 1 Diagnostic Report 200

ID Description

Count in

Group Top

Five

Count in

Individual

Top Five

Average

Criticality

Average

Feasibility

16

Lack Domain Expertise

TelSoft has limited expertise

in customers‟ business

domains (training)

1 4 3.92 2.69

17

Insufficient Sparring

Insufficient sparring with

customers on feasibility of

requirements and solutions.

0 0 3.33 2.63

www.manaraa.com

B.4 Phase 1 Diagnostic Report 201

Top Issues

Table 3 shows issues that received a high priority from several groups or individuals. An issue

was included below if

(a) 2 or more groups ranked the issue in the Top Five and/or

(b) 6 or more individuals ranked the issue in the Top Five.

Table 3: Top Issues: Software Development View

ID Description

Group

Count

(Max=3)

Individual

Count

(Max=13)

3

QA Disintegration

Quality assurance practices are insufficiently integrated

with development practices; quality assurance is more

like a formal administrative procedure than a facilitator

of requirement and software quality.

3 9

5

Change Management

Requirements changes are not addressed in a systematic

fashion; documents are as a result no kept updated and

consistent; these practices create problems for some

stakeholders.

2 8

7

Customer-driven Innovation

Software product innovation and development is driven

by customer requests in a rather ad-hoc fashion; this

practice threatens the long-term market value of TelSoft

software products.

2 5

11

Ad Hoc Review

Review of requirements is often performed in an ad-hoc

fashion where reviewers are unprepared and critique is

not systematically fed back into the requirements

process.

2 7

13
Lack Time

There is not enough time to do a good job in software

development. (Time)

1 9

14

Resource Allocation

QA and core development have difficulties in

prioritizing tasks and requests across projects.

(Resource)

1 6

www.manaraa.com

B.4 Phase 1 Diagnostic Report 202

Top Issues by Roles

Responses were grouped by role to determine whether priorities and needs differed. Note:

Responses from the one architect were not grouped since he did not seem to fit any of the

categories.

Priority Assignments

Table 4 looks at the “Priority” column. The chart only reports on issues that were ranked HI by at

least one group of stakeholders.

 HI: the majority of the people in the group ranked the issue in the top 5

 LO: at least one person in the group ranked the issue in the top 5

 – : no one in the group ranked the issue in the top 5

Table 4: Role-based view of top priority issues

Issue Description

Quality

Assurance

(2 people)

Management

(6 people)

Development

(2 people)

Business

Analyst

(2 people)

3
QA

Disintegration
HI HI LO HI

5
Change

Management
– HI LO LO

7

Customer-

driven

innovation

– LO HI –

11
Ad Hoc

Review
LO LO LO HI

13 Lack Time HI LO HI HI

14
Resource

Allocation
LO LO HI –

15
BA SW

access
– LO HI LO

Criticality Assignments

Table 5 reports the average “Criticality” score (1=irrelevant, 2=maybe useful, 3=useful, 4=very

useful, 5=critical) by role. The table only shows those issues where there were differences

among stakeholder groups.

Table 5: Role-based view of critical issues

www.manaraa.com

B.4 Phase 1 Diagnostic Report 203

Issue Description

Quality

Assurance

(2 people)

Management

(6 people)

Development

(2 people)

Business

Analyst

(2 people)

8
Outdated

Tools
3.5 2.8 4.5 3.5

12
Avoid

Confrontation
3.5 3.0 4.0 3.5

13 Lack Time 5.0 3.8 3.0 5.0

14
Resource

Allocation
4.5 3.5 3.0 4.5

15
BA SW

Access
2.5 4.3 3.0 4.0

Software Development Model of Issues

Figure 1: Software Development Workshop Issues

www.manaraa.com

B.4 Phase 1 Diagnostic Report 204

Internal Customer View

Requirements Management Workshop #2 Report

Held March 16
th

, 10:00 am – 12:30 pm

Theme: Problem Areas in Requirements Management at TelSoft

Participants: Names Withheld

Workshop Process:
 Lars explained the list of “Potential Problem Areas.” Participants divided one of our

original issues into two separate issues. Therefore, there were a total of 14 potential

problems to assess.

 Participants individually assessed each issue on Criticality and Feasibility.

 Participants individually assigned a priority to (at least) the top 5 issues. The highest

priority issue was assigned a value of 1.

 Participants were divided into predetermined groups to discuss the issues. Each group

reached consensus on the top priority issues.

 All participants met to share group findings.

Report Contents

 Complete list of Potential Problem Areas

 Top Issues

 Top Issues by Function

 Internal Customer Model of Issues

Complete list of Potential Problem Areas

After all interviews were completed, the Research Team (Nannette, Lars, and Roy) created a list

of “Potential Problems” (issues 1 through 13 below). During the workshop, each “Potential

Problem” was described. Participants decided to split part of the original formulation of issue #8

into a new issue – #14. Participants provided an individual assessment of

 Criticality – How important is it to solve this problem? (1=irrelevant, 2=maybe useful,

3=useful, 4=very useful, 5=critical)

 Feasibility – How feasible is it to solve this problem? (1=impossible, 2=difficult,

3=possible, 4=easy, 5=no problem)

 Priority – What are the top problems that should be addressed?

Participants were divided into two predetermined groups to discuss the issues. The group

reached consensus on the top priority issues.

Table 6 summarizes the data collected during this process.

 Description: Complete text of the “Potential Problem” as shown to the workshop

participants

www.manaraa.com

B.4 Phase 1 Diagnostic Report 205

 Occurrence in Group Top Five: Number of times a group prioritized this as a top five

problem

 Occurrence in Individual Top Five: Number of times an individual prioritized this as a

top five problem

 Average Criticality: Average criticality score assigned to this problem by individuals

 Average Feasibility: Average feasibility score assigned this problem by individuals

Note: Results from 7 respondents were used for individual rankings. Results from 9

respondents were used for the average criticality and average feasibility.

Table 6: Potential Problems: Internal Customer View

ID Description

Count in

Group Top

Five

Count in

Individual

Top Five

Average

Criticality

Average

Feasibility

1

Unsystematic early capture of

requirements

TelSoft representatives (e.g. Sales

and Marketing) often capture

client requirements in

unsystematic, non-documented

ways as basis for later interaction

with other TelSoft stakeholders.

1 3 4.33 2.89

2

Market and technology

opportunities not translated into

requirements

TelSoft stakeholders are aware of

opportunities that would enhance

the marketability of TelSoft

software (e.g. servicing energy

clients, adding drawing capability

to spatial product). These

opportunities are not translated

into software requirements even

though such innovations could

enhance customer interaction and

services.

1 1 4.00 2.67

3

Complex chain of requirements

communication

There are several TelSoft

stakeholders (e.g. Sales, Project

Management, Business Analysts,

Software Developers) involved in

the requirements process. That

leads to many interpretations and

necessary translations, each

introducing new sources of error.

1 2 3.67 2.67

www.manaraa.com

B.4 Phase 1 Diagnostic Report 206

ID Description

Count in

Group Top

Five

Count in

Individual

Top Five

Average

Criticality

Average

Feasibility

4

Changes not systematically

communicated to Data Services

operators

Procedural and software changes

are not systematically

communicated to Data Services

operators across the organization.

2 4 4.33 3.89

5

Problematic requirements

collaboration between Sales and

Data Services

Sales desires more timely,

professional interaction with Data

Services to enhance project

estimation and planning. Data

Services desires more detailed

information from Sales regarding

Client requirements to support the

bid process.

0 1 3.89 2.78

6

Varying contribution of Source

To Target Matrix

There are different opinions about

the role and value of the Source

To Target Matrix. The intention is

to create this document during the

bid process to price the project.

However, most Clients spent little

time specifying requirements

upfront, and they tend to primarily

present good, standard cases of

data. That leads to inaccurate

pricing.

1 1 4.33 2.11

7

Data Services pricing squeezes

requirements implementation

The pricing of Data Services does

not permit enough resources for

implementation of software

requirements.

1 2 4.33 2.44

8

Software often rejected by Data

Services

Data Services frequently rejects

software from TelSoft

Development due to insufficient

quality assurance practices.

2 5 4.56 3.33

www.manaraa.com

B.4 Phase 1 Diagnostic Report 207

ID Description

Count in

Group Top

Five

Count in

Individual

Top Five

Average

Criticality

Average

Feasibility

9

Development not aligned with

business volume

Although internal customers

generate the largest business

volume, Software Development

focuses on external customers.

Software Development

organization and management are

remnants of previous traditions

rather than effective responses to

current business needs (e.g. Data

Services, software services, and

software innovations).

1 6 4.22 2.89

10

Deadlines not met for Data

Services software

Deadlines for delivering software

to Data Services are often not met.

Ad-hoc software management

practices jeopardize the

profitability of Data Services

projects.

2 5 4.67 2.56

11

Data Services pays for

development errors

The difference in nature and

content between external contracts

and internal contracts implies that

Data Services pays for software

development errors.

1 1 3.00 3.44

12

Unsystematic error tracking

There is no systematic process for

tracking errors in requirements and

software related to Data Services.

While software deficiencies are

known, they are not tracked, root

causes are not determined, and

appropriate interventions are not

enacted.

0 1 4.00 3.11

www.manaraa.com

B.4 Phase 1 Diagnostic Report 208

ID Description

Count in

Group Top

Five

Count in

Individual

Top Five

Average

Criticality

Average

Feasibility

13

Data Services not exploited for

process and product innovation

Knowledgeable Data Services

employees are rarely consulted as

a source for innovating Data

Services –Software Development

interactions or the legacy software.

0 0 3.56 3.56

14

Data Services product rejection

Data Services rejects roughly 50%

of the work done by

subcontractors. Client rejects

roughly 25% of the exchanges

completed by Data Services.

0 2 3.86 3.43

Top Issues

Table 7 shows issues that received a high priority from several groups or individuals. An issue

was included below if

(a) Both groups ranked the issue in the Top Five and/or

(b) Average Criticality ranked by the 9 individual respondents is greater than 4.00.

Note: Frequency of individuals that ranked this item in Top Five is included for informational

purposes only.

www.manaraa.com

B.4 Phase 1 Diagnostic Report 209

Table 7: Top Issues: Internal Customer View

ID Description

Group

Count

(Max=2)

Individual

Count

(Max=7)

Average

Criticality

1

Unsystematic early capture of requirements

TelSoft representatives (e.g. Sales and

Marketing) often capture client requirements

in unsystematic, non-documented ways as

basis for later interaction with other TelSoft

stakeholders.

1 3 4.33

4

Changes not systematically communicated to

Data Services operators

Procedural and software changes are not

systematically communicated to Data Services

operators across the organization.

2 4 4.33

6

Varying contribution of Source To Target

Matrix

There are different opinions about the role and

value of the Source To Target Matrix. The

intention is to create this document during the

bid process to price the project. However,

most Clients spent little time specifying

requirements upfront, and they tend to

primarily present good, standard cases of data.

That leads to inaccurate pricing.

1 1 4.33

7

Data Services pricing squeezes requirements

implementation

The pricing of Data Services does not permit

enough resources for implementation of

software requirements.

1 2 4.33

8

Software often rejected by Data Services

Data Services frequently rejects software from

TelSoft Development due to insufficient

quality assurance practices.

2 5 4.56

10

Deadlines not met for Data Services software

Deadlines for delivering software to Data

Services are often not met. Ad-hoc software

management practices jeopardize the

profitability of Data Services projects.

2 5 4.67

www.manaraa.com

B.4 Phase 1 Diagnostic Report 210

Major Differences between functions

Responses were grouped by function to determine whether priorities and needs differed. Table 8

reports the average “Criticality” score (1=irrelevant, 2=maybe useful, 3=useful, 4=very useful,

5=critical) by role. The table only shows those issues where there were differences among

stakeholder groups.

Table 8: Role-based view of critical issues

Issue Description

Sales &

Marketing

(2 people)

Data Services

(6 people)

Development

(1 person)

1
Unsystematic early

capture of requirements
3.5 4.8 3.0

3

Complex chain of

requirements

communication

2.5 4.0 4.0

7

Data Services pricing

squeezes requirements

implementation

3.5 4.5 5.0

11
Data Services pays for

development errors
2.0 3.5 2.0

12
Unsystematic error

tracking
4.5 4.0 3.0

14
Data Services product

rejection
4.5 3.3 5.0

www.manaraa.com

B.4 Phase 1 Diagnostic Report 211

Figure 2: Software-Sales Model

Note: Issue in bold italics is from the “Top Issues” list.

Figure 3: Data Services - Software model

www.manaraa.com

B.4 Phase 1 Diagnostic Report 212

Table 9: Requirements Issues from Data Services perspective

Interaction Related Issue(s)

Data Services – SW

Development

3: Complex chain of requirements

communication

7: Data Services pricing squeezes requirements

implementation

8: Software often rejected by Data Services

10: Deadlines not met for Data Services software

11: Data Services pays for Development errors

12: Unsystematic error tracking

Data Services – D.S.

Operators

4: Changes not systematically communicated to

 Data Services operators

13: Data Services not exploited for process and

product innovation

Customer – Data Services 6: Varying contributions of Source to Target

Matrix

14: Data Services product rejection

Note: Issues in bold italics are from the “Top Issues” list.

www.manaraa.com

B.4 Phase 1 Diagnostic Report 213

External Customer View

Researchers from the Center for Process Innovation (CEPRIN) at Georgia State University

interviewed TelSoft‟s external customers regarding the requirements management processes.

The following customer representatives generously gave their time to participate in this effort:

<Names Withheld>

At least one participant expressed keen interest in receiving a copy of the findings from this

round of interviews. We recommend that a separate report describing the actions to be taken in

response to the interviews be distributed to the external customers as soon as possible.

 Executive Summary of Far Telco interviews
Far Telco employees were consistent regarding TelSoft‟s strengths: dedicated personnel who are

knowledgeable about Far Telco‟s processes and business needs. At this point, the TelSoft-Far

Telco relationship seemed stronger and closer than the IBM-Far Telco relationship. Most of the

time, they liked the fact that TelSoft plays a consulting role, making recommendations on

alternative solutions and warnings of change impacts. TelSoft is seen as responsive when called

upon by Far Telco. The EWO software may be old, but it meets the needs that Far Telco

currently has.

Direct quotes include:

 “Out of all the different vendors I work with, this one works pretty smoothly.”

 “We choose TelSoft software because they have a good relationship with us in the past.

They‟ve performed when other people have not performed. They know our business.

They pretty much understand our engineering processes.”

 “I know I can get in contact with them and ask a question. I‟m also confident that they‟ll

respond to me in a timely manner.”

 “TelSoft has a good handle on our business and our needs – sometimes even better than

our process owners.”

Some challenges for TelSoft going forward:

Reactive rather than Proactive. A recurring weakness mentioned is that TelSoft is not

proactive in its relationship with Far Telco. Two problems occur as a result. First, customer

feels “taken for granted.” Second, business opportunities are missed.

Early detail-orientation bogs down the process. Client understands the need for TelSoft to

know details in order to provide estimates. However, they would prefer a ballpark figure instead

of getting down into details early.

Great relationship but don’t take it for granted. Compared to other vendors, TelSoft does not

have an onsite presence. They don‟t visit monthly, talk about future plans for the software, or

provide ongoing training. Need to keep in mind that Far Telco upper management compares

TelSoft to other vendors that have flashier presentation styles.

www.manaraa.com

B.4 Phase 1 Diagnostic Report 214

Respond to the little concerns as though they were big. Clients described problems to us that

they had previously mentioned to TelSoft personnel. For example, several minor irritations with

email communication were mentioned (e.g., irrelevant subject line, text in the body of the

message instead of an attachment, and replying with attached files).

Better manage the Testing Process. TelSoft typically delivers the “Testing Requirements”

when the code is delivered. One interviewee preferred to see these at the time of the Design

Walkthrough when the Functional Spec is reviewed. That way, they can better know the kinds

of things that TelSoft might potentially miss during testing.

Executive Summary of Local Telco interviews

Local Telco agreed with Far Telco that the strength at TelSoft is in its people. TelSoft knows and

understands their business. They loved having onsite support in the past. They felt that their

current contacts at TelSoft are responsive and willing to help when called upon.

Overall, Local Telco expressed a “lack of confidence” in TelSoft ability to consistently deliver

quality code. One interviewee stated that TelSoft was in “fast delivery mode” and “throwing

software over the wall as a time-savings device.” They were concerned that the software

packages they received contained unsolicited changes that were put in for other customers.

Selected quotes:

 “We don‟t have a confidence level in what we receive in a software package. We don‟t

even have confidence that it‟s ours.”

 “Unless we ask for it, we don‟t get documentation on what‟s in the release, what changes

have been made. We don‟t get the packaging instructions on the package… I don‟t

believe there is a repository for me to roll back to.”

Reactive rather than Proactive. When contacted, TelSoft is responsive. However, when

TelSoft discovers a problem, they don‟t initiate communication about that to Local Telco.

Better manage the Testing Process. Testing is too limited and doesn‟t catch as much as it

should. One interviewee speculated that the level of testing done was a more related to what

their (TelSoft‟s) schedule allowed rather than the needs of the software.

Customer Relationship Management.

 ”We don‟t have a partnership relationship. A lot of times we kind of feel like there‟s

animosity from them toward us. I don‟t know how big of a customer we are in their eyes,

but I don‟t feel treated like a valued customer.”

Strengths and Challenges

The following tables summarize the customer perspectives on strengths and challenges in their

relationship with TelSoft.

www.manaraa.com

B.4 Phase 1 Diagnostic Report 215

Table 10: Strengths: External Customer View

Strengths Level of Agreement

TelSoft understands our business. Local Telco, Far Telco

TelSoft‟s software basically meets our business need. Local Telco, Far Telco

TelSoft is responsive to customer requests. Other Telco, Local Telco,

Far Telco

TelSoft is flexible in adapting to our processes and tools. Other Telco, Local Telco,

Far Telco

TelSoft has dedicated and knowledgeable employees. Other Telco, Local Telco,

Far Telco

TelSoft plays a consulting role and recommends alternative solutions. Far Telco

TelSoft explains the rationale behind estimates well. Far Telco

Table 11: Challenges: External Customer View

Challenges Level of Agreement

TelSoft needs to decrease the number of bugs and unexpected changes

in delivered software.

Local Telco, Far Telco,

Other Telco

TelSoft needs to increase the transparency and consistency of its

configuration management, documentation, and test activities.

Local Telco

TelSoft needs to enhance its customer relationship management. Local Telco, Far Telco,

Other Telco

TelSoft needs to improve its packaging procedures and related release

notes.

Local Telco, Far Telco

TelSoft should become more involved with end users to identify and

anticipate changes and to support training.

Far Telco

TelSoft needs to be better at proactively sharing relevant information

about revisions and plans with the client.

Local Telco

TelSoft needs to increase the frequency and consistency of their

communication with the client.

Far Telco

TelSoft should seek to increase its access to and utilization of client

systems and facilities (e.g., EDP, NetMeeting, Local Telco test

facilities).

Local Telco, Far Telco

TelSoft should be better at making early estimates to help scope

projects.

Far Telco

TelSoft should streamline its software interface to be more

competitive.

Other Telco

Standardized Assessment

The following report was obtained from administering the assessment from Sommerville and

Sawyer‟s 1997 book: Requirements Engineering: A Good Practice Guide (REGPG). The

assessment was conducted on March 30, 2005.

www.manaraa.com

B.4 Phase 1 Diagnostic Report 216

Table 12: Area Strength Matrix

Area Area ID Weak Average Good Strong

Requirements Document 3 *

Requirements Elicitation 4 *

Requirements Analysis and

Negotiation

5 *

Describing Requirements 6 *

System Modeling 7 *

Requirements Validation 8 *

Requirements Management 9 *

Requirements Engineering

for Critical Systems

10 *

Note: Area ID corresponds to the chapter in the REGPG book.

Table 13: Guideline Usage Summary

Area ID 03 04 05 06 07 08 09 10

Guideline counts 7 9 2 4 2 2 2 0

Maximum 8 13 8 5 6 8 9 9

% Usage 88 69 25 80 33 25 22 0

Table 14: Overall Summary

 Basic Intermediate Advanced

Guidelines Used 19 9 0

Weighted Score 37 14 0

Maximum Possible 105 66 27

Score % of Maximum 35 21 0

Level Initial

www.manaraa.com

B.4 Phase 1 Diagnostic Report 217

Score for Basic, Intermediate, and Advanced Guidelines
Table 15: Score against basic guidelines

ID Guideline Score

03.02 Explain how to use the document 0

04.02 Be sensitive to organizational and political considerations 0

04.05 Define the system's operating environment 0

04.06 Use business concerns to drive requirements elicitation 0

05.01 Define system boundaries 0

05.02 Use checklists for requirements analysis 0

05.05 Prioritize requirements 0

06.01 Define standard templates for describing requirements 0

07.03 Model the system architecture 0

08.01 Check that the requirements document meets your standards 0

08.02 Organize formal requirements inspections 0

08.04 Define validation checklists 0

09.02 Define policies for requirements management 0

09.04 Maintain a traceability manual 0

Number of Not Used Scores = 14

03.08 Make the document easy to change 1

04.01 Assess system feasibility 1

04.03 Identify and consult system stakeholders 1

04.04 Record requirements sources 1

05.04 Plan for conflicts and conflict resolution 1

06.02 Use language simply, consistently and concisely 1

06.04 Supplement natural language with other descriptions of requirements 1

07.01 Develop complementary system models 1

07.02 Model the system's environment 1

Number of Discretionary Scores = 9

05.03 Provide software to support negotiations 2

06.03 Use diagrams appropriately 2

Number of Normal Scores = 2

03.01 Define a standard document structure 3

03.03 Include a summary of the requirements 3

03.04 Make a business case for the system 3

03.05 Define specialized terms 3

03.06 Lay out the document for readability 3

03.07 Help readers find information 3

08.03 Use multi-disciplinary teams to review requirements 3

09.01 Uniquely identify each requirement 3

Number of Standardized Scores = 8

Number of Basic Guidelines Assessed = 33

Final Score

37

www.manaraa.com

B.4 Phase 1 Diagnostic Report 218

Table 16: Score against intermediate guidelines

ID Guideline Score

05.06 Classify requirements using a multi-dimensional approach 0

05.07 Use interaction matrices to find conflicts and overlaps 0

07.04 Use structured methods for system modelling 0

07.05 Use a data dictionary 0

07.06 Document the links between stakeholder requirements and system

models

0

08.05 Use prototyping to animate requirements 0

08.07 Propose requirements test cases 0

09.03 Define traceability policies 0

09.05 Use a database to manage requirements 0

09.06 Define change management policies 0

Number of Not Used Scores = 10

04.10 Prototype poorly understood requirements 1

04.11 Use scenarios to elicit requirements 1

04.12 Define operational processes 1

08.06 Write a draft user manual 1

09.07 Identify global system requirements 1

Number of Discretionary Scores = 5

04.08 Record requirements rationale 2

04.09 Collect requirements from multiple viewpoints 2

06.05 Specify requirements quantitatively 2

Number of Normal Scores = 3

04.07 Look for domain constraints 3

Number of Standardized. Scores = 1

Number of Intermediate Guidelines Assessed = 19

Final Score

14

www.manaraa.com

B.4 Phase 1 Diagnostic Report 219

Table 17: Score against advanced guidelines

ID Guideline Score

04.13 Reuse requirements 0

05.08 Assess requirements risks 0

08.08 Paraphrase system models 0

09.08 Identify volatile requirements 0

09.09 Record rejected requirements 0

Number of Not Used Scores = 5

Number of Advanced Guidelines Assessed = 5

Final Score

0

Unused Guidelines by Cost of Implementation
Table 18: Very low cost of implementation

ID Guideline Type

03.02 Explain how to use the document Basic

Table 19: Low cost of implementation

ID Guideline Type

04.02 Be sensitive to organizational and political considerations Basic

04.05 Define the system's operating environment Basic

04.06 Use business concerns to drive requirements elicitation Basic

05.01 Define system boundaries Basic

05.05 Prioritize requirements Basic

08.01 Check that the requirements document meets your standards Basic

09.04 Maintain a traceability manual Basic

10.02 Involve external reviewers in the validation process Basic

05.07 Use interaction matrices to find conflicts and overlaps Intermediate

07.06 Document the links between stakeholder requirements and

system models

Intermediate

08.07 Propose requirements test cases Intermediate

10.04 Derive safety requirements from hazard analysis Intermediate

10.05 Cross-check operational and functional requirements against

safety requirements

Intermediate

09.08 Identify volatile requirements Advanced

09.09 Record rejected requirements Advanced

Table 20: Low to Moderate cost of implementation

ID Guideline Type

05.02 Use checklists for requirements analysis Basic

07.03 Model the system architecture Basic

08.04 Define validation checklists Basic

10.01 Create safety requirement checklists Basic

05.06 Classify requirements using a multi-dimensional approach Intermediate

www.manaraa.com

B.4 Phase 1 Diagnostic Report 220

Table 21: Moderate cost of implementation

ID Guideline Type

06.01 Define standard templates for describing requirements Basic

08.02 Organize formal requirements inspections Basic

09.02 Define policies for requirements management Basic

07.05 Use a data dictionary Intermediate

09.03 Define traceability policies Intermediate

05.08 Assess requirements risks Advanced

Table 22: Moderate to high cost of implementation

ID Guideline Type

07.04 Use structured methods for system modeling Intermediate

08.05 Use prototyping to animate requirements Intermediate

09.05 Use a database to manage requirements Intermediate

09.06 Define change management policies Intermediate

10.03 Identify and analyze hazards Intermediate

04.13 Reuse requirements Advanced

08.08 Paraphrase system models Advanced

Table 23: High cost of implementation

ID Guideline Type

10.06 Specify systems using formal specifications Advanced

10.07 Collect incident experience Advanced

10.08 Learn from incident experience Advanced

10.09 Establish an organizational safety culture Advanced

www.manaraa.com

 221

B.5: Software Charter
March 2006

Reason for Being
TelSoft Division exists to provide AM/FM/GIS software and services in an innovative and

disciplined environment while earning a fair profit and enhancing our clients‟ business.

Software Strategy
TelSoft Division develops and maintains a standardized portfolio of software for delivering

AM/FM/GIS solutions to clients. The portfolio is tailored to support the management and

analysis of location-based asset information with a suite of tools to mechanize and streamline

processes for planning, building, provisioning, and maintaining these assets.

TelSoft Software Policies
1. TelSoft will strive to operate based on the highest professional standards and processes.

2. TelSoft will strive to understand and incorporate its customers‟ business knowledge in our

products.

3. TelSoft will maintain a proactive professional relationship to its customers.

4. TelSoft will manage each development project with a two-phase approach that separates

requirement and development activities.

5. TelSoft will only engage resources to start design and construction when TelSoft has a

baseline of identifiable and agreed upon requirements.

6. TelSoft will only engage resources to address requirement change requests that are

documented, agreed upon and applied to the requirements baseline.

7. TelSoft will communicate status to its customers of all active projects on a regular basis.

8. TelSoft will only deliver official releases of software to a client with the written approval

of Quality Assurance.

9. Each release of TelSoft software will include documentation of all changes and new

features since the previous release.

www.manaraa.com

 222

B.6: Software Coordination Group Fixed Agenda

Strategy Revision – Lead, Division President

Preconditions

 Latest version of Software Strategy is available

 A log of concerns and opportunities related to TelSoft‟s Software Strategy is available

Meeting activity

 Review and possibly revise TelSoft‟s Software Strategy based on Log

 Keep a log of concerns and opportunities related to the Strategy as foundation for future

revisions

Expected outcome

 Continuous communication of Software Strategy to external and internal stakeholders

 Strong foundation for managing customer relationships

 Strong foundation for the Software Coordination Group

Software Project Review – Lead, Software Manager

Preconditions

 A list of all current and future software projects is available

 Each current project has predefined key performance indicators (should fit on a single

page)

 Updated status on progress against these key performance indicators (KPI) have been

provided to all members of the SCG at least 48 hours prior to the meeting. The KPI

should be aligned with TelSoft‟s required set of minimal disciplines for software

development.

 Each future project is described in terms of champion, business rationale, and expected

resources and outcomes.

Meeting Activity

 Review KPI for each software project

 Prioritize resources for projects across the entire portfolio

 Review overall portfolio performance

Expected outcome

 Recommendations for improving individual project performance (e.g., adjust the software

project plan, provide additional personnel, provide incentives for employees, etc.)

 Recommendations for improving overall portfolio performance (e.g., reallocate resources

to higher priority projects, consider terminating low-performing projects, etc.)

 Prioritized and transparent portfolio of projects

www.manaraa.com

B.6 SCG Fixed Agenda 223

Opportunity Review – Lead, Product Manager

Preconditions

 A list of market, technology and customer opportunities is available

 Opportunities can be described as either emerging opportunities or mature opportunities

 A cost-benefit analysis for each mature opportunity has been performed and provided to

all members of the SCG at least 48 hours prior to the meeting

Meeting Activity

 Review cost-benefit analysis for each opportunity

 Provide additional feedback regarding these opportunities

 Evaluate whether each opportunity fits with the software strategy

 Recommend which opportunities should be promoted as future projects

Expected outcome

 Prioritized list of opportunities

 Possible revision of Software Strategy

 Software projects that will strengthen TelSoft‟s competitive position

Improvement Review – Lead, VP of Software

Preconditions

 A list of all current and future improvement initiatives is available

 Each current project has predefined key performance indicators (should fit on a single

page)

 Updated status on progress against these key performance indicators (KPI) have been

provided to all members of the SCG at least 48 hours prior to the meeting

 Each future project is described in terms of champion, business rationale, and expected

resources and outcomes. (Roughly half page)

 Annual or bi-annual assessments of software development practices are conducted to

identify possible new improvement initiatives

Meeting Activity

 Review KPI for each improvement project

 Prioritize improvement projects across the entire portfolio

 Identify areas in which new improvement initiatives should be considered

Expected outcome

 Recommendations for improving individual project performance (e.g., adjust the software

project plan, provide additional personnel, provide incentives for employees, etc.)

 Recommendations for improving overall portfolio performance. Determine whether to

invest more or less money in these improvement activities (e.g., reallocate resources to

higher priority projects, consider terminating low-performing projects, etc.)

 Recommendations for new improvement initiatives.

 Prioritized portfolio of projects

www.manaraa.com

B.6 SCG Fixed Agenda 224

Major Account Review – Rotating Lead

Preconditions

 Lead has assembled information regarding the relationship between the client and TelSoft

Software group (e.g., Has the customer‟s perception of us changed? What currently

threatens this relationship? Are there other people within these organizations that we

should be talking with?)

 Lead may also present specific recommendations for improving this relationship

Meeting Activity

 Listen, identify potential opportunities, and recommend actions

Expected outcome

 New directions, some decision making, possible realignment

www.manaraa.com

 225

B.7: Problem Solving Team Fixed Agenda

Improvement Project Monitoring – Lead TBD

Preconditions

 Status (plan comparison, intermediate results, issues, suggestions, requests, lessons

learned) of all current process improvement teams provided two days in advance of

meeting

 Artifacts (position papers, templates, process documents, etc.) from process improvement

teams provided two days in advance of meeting

Meeting Activity

 Review and discuss status and artifacts

 Review and update Process Document Summary

 Record any recommendations

 Determine if any follow up or support from PST is needed

 Budget and schedule review

Expected outcome

 Recommendations for current improvement projects are communicated

 PST gains appreciation for status of continuous improvement

Process Management Monitoring – Lead TBD

Preconditions

 Quality Assurance group is responsible for the day-to-day management of processes

 Status from Process Management Activity (policy and process issues, infrastructure and

repository issues, resources, alignment of practice with process management process)

Meeting Activity

 Review and discuss status

 Determine if any follow up or support from PST is needed

Expected outcome

 Feedback and recommendations to Quality Assurance group

 PST gains appreciation for process management practice and process

Practice, Policy, and Process Assessment – Lead TBD

Preconditions

 TelSoft is committed to assess software practice, policies, and processes on a regular

basis

 Plan for next assessment of software practice, policies, and processes

 Preliminary results from ongoing assessments

www.manaraa.com

B.7 PST Agenda 226

Meeting Activity

 Discuss and decide upon assessment plans

 Discuss and decide upon stakeholder involvement in assessments

 Discuss preliminary results from ongoing assessment and provide feedback

Expected outcome

 Assessments of software practice, policies, and processes are conducted on a regular

basis

 Ongoing assessments are facilitated and monitored

Improvement Identification and Prioritization – Lead TBD

Preconditions

 Post-project review documentation for any projects recently completed

 List of process improvement ideas submitted from the web page suggestion box

 Survey results for any surveys conducted

 Final assessment reports (when available)

Meeting Activity

 Review post-project review documentation for any process issues

 Brainstorm ideas for other process improvement activities we should undertake

 Discuss and prioritize recommendations based upon final assessment reports

 Determine what new process improvements should be implemented, assign resources for

implementation

Expected outcome

 Recommendations from various sources assessments are continuously prioritized for

action

 The portfolio of ongoing and possible improvement initiatives is maintained

 Proposal for new process improvement initiatives – including focus, goals, deliverables,

and resources – is sent to SCG

Participation and Communication

Preconditions

 The portfolio of ongoing and possible improvement initiatives is maintained

 Status and plans for ongoing improvement initiatives are available

Meeting Activity

 Review and discuss stakeholder involvement in improvement activities

 Review and discuss communication needs and opportunities about improvement

activities

 Decide on improved participation and communication strategies

 Identify opportunities to communicate issues and celebrate results

Expected outcome

www.manaraa.com

B.7 PST Agenda 227

 Stakeholders are appropriately involved and sufficiently informed about TelSoft

improvement initiatives

www.manaraa.com

 228

B.8: Second Wave Summary Report

Background
The collaboration began in October 2004 with an overall plan described in the Memorandum of

Understanding. Between December 2004 and May 2005, CEPRIN assessed requirements

practices by interviewing individuals from three stakeholders groups: software development,

internal customers, and external customers. In addition, a standards assessment was conducted

based upon the Requirements Engineering Good Practice Guide checklist. The results of this

assessment were summarized in the Phase 1 Report. Based upon this data, CEPRIN identified

seven improvement areas and recommended that a sense-and-respond approach be used to guide

the improvement.

During the first wave, the Problem Solving Team (PST) designed five project teams for

addressing these improvement areas: Software Coordination, Customer Relations, Requirements

Management, Quality Assurance, and Configuration Management. Each team was given a

suggested set of activities to be completed by April 1, 2006. The accomplishments of the first

wave teams were documented in a First Wave report.

During the second wave, the PST reconfigured the have three project teams: Quality Results,

Customer Relations, and Process Management. This report describes the accomplishments of

these teams and lessons learned. A kick-off meeting was held on April 18, 2006 for all members

of the software development group. The objectives of this meeting were to describe key

processes and templates identified during the first wave, identify questions regarding the

software policies, discuss how implementing these policies will impact employee work, and

introduce the upcoming 2
nd

 wave activities.

Improvement team results
This report summarizes the results of the three project teams from the second wave. This

corresponds to the second Establishing and Acting phases of the IDEAL model.

The following sections provide the following information for each team:

 original ideas suggested at the Kick-off meeting

 team accomplishments during the second wave

 implementation activities

Choices for evaluating the state of each action (To be determined by PST):

 Done

 Deferred

 Planned, prepared, but not implemented

 Modified

Quality Results
Team lead: VR

Participants: Names withheld

www.manaraa.com

B.8 Second Wave Report 229

Original Suggestions

1) Enhance internal Quality Assurance processes

 Post release analysis

 Clean up bug database

 Improve efficiency of QA department

2) Improve software release management

 Establish archiving process for releases

 Create software release database

 Maintain required files list

Accomplishments

1) The team developed six position papers:

 PDPR Database Cleanup

 QA Archiving of builds and releases

 Improve efficiency of QA department

 Post Release Quality Review

 Software release database

 Documenting build contents (originally called maintain required files list)

Of these six, two position papers were removed from scope of our team based on PST review

of 7/21/06. The „software release database‟ initiative was handed over to the customer

relations team and the „documenting build contents‟ was determined to be internal to QA and

was essentially covered in the “QA Executes Builds” process developed in Phase 1.

2) The following process documents were created:

 PDPR database cleanup

o Defined an initial process where all bugs over 3 years old are closed and archived;

bugs that are assigned to former employees are reassigned to appropriate

personnel.

o Manual process to review the remaining bugs

o A process developed to keep the database updated longer-term on an ongoing

basis.

 Improve efficiency of QA department

o Defined a regression testing process utilizing the regression checklist introduced

in phase 1

o Added a process step to create a high-level test case list prior to generating

detailed test cases

o Added metrics collection (cost, schedule, release, and bug metrics) and created a

template for collecting/storing these metrics

 QA archiving of builds and releases

o \\devsrv\certification has been defined as a read-only share for QA builds

o QA will keep create and retain master CDs of each release

 Post Release Quality Review

o Defined a process for post project review

o Created a template to be used for post project reviews

file:\\devsrv\certification

www.manaraa.com

B.8 Second Wave Report 230

Lessons learned

The following are items the team identified as lessons we learned during the course of executing

the process improvement initiatives:

 It would have been more efficient to have included specific personnel from the PST in

the position paper review cycle in order to hash out issues earlier. Sometimes feedback

from the PST came late in the cycle.

 At the start of the process improvement initiatives, it would have been beneficial to have

information such as the reason behind the initiative, perceived benefits, intended scope,

etc. This would have helped the team make a better determination on how best to resolve

the initiative. We ended up dropping one initiative and moving another one after we had

spent time working on them.

Suggestions moving forward

The team came up with the following suggestions for moving forward.

 Continue with implementation of items in phase 1 that are not yet completed (regression

checklists, for example)

 Develop details of the QA build process that were defined at a high level in Phase 1 (for

example, where are build content documents stored, how file comparison from release to

release is to be done, etc.).

 Implement the processes and utilize the templates developed above. Create a transition

plan if necessary.

Customer Relations
Team lead: RW

Members: Names withheld

Original Suggestions

1) Maintain customer profile information

2) Improve image through customer deliverables

3) Increase TelSoft “presence” with the customer

 Establish direct customer communication

 Establish regular management communication with customer

Accomplishments

The team developed the following papers:

 Policy Statement:

o TelSoft Email Correspondence Policy Statement

 Guidelines:

o Proposals to Include Deployment Support

o Deliver Proposals with a Presentation

o Management Discussion Points

o Customer Engagement

www.manaraa.com

B.8 Second Wave Report 231

In addition, the team:

1) Put together packaging for all CD delivered products (Jacket, CD Label and insert)

2) Identified requirements for a division wide contacts database and reviewed the "ACT" product

against these requirements

Lessons learned

None at this time

Suggestions moving forward

Continue with implementation of contact database and integration with existing processes in the

company.

Process Management
Team lead: JV

Members: Names withheld

Original Suggestions

1) Update web site to reflect most useful information about TelSoft‟ processes and templates

2) Evaluate all existing processes in relation to future use at TelSoft

3) Create standards for templates and review 1
st
 wave deliverables in light of these standards

4) Create plan for process management to be integrated into QA by end of 2
nd

 wave

Accomplishments

 Weeded out process documents no longer used, identified those that need to be revised or

approved and categorized them as such in Notes.

 Created standards for all process documents and templates.

 Reviewed the phase 1 and the documents on the external web page for compliance and

generated compliance reports.

 Implemented a suggestion box on the web site where people can submit process-related

suggestions.

 Created Process Management process document.

 Created fixed agenda for the PST.

 Developed interpersonal relationships with team members.

 Created Oracle database for tracking/managing suggestions from the web site.

 Published our software policies and templates to web site.

Lessons learned

 More frequent and earlier input/review of the web site by upper management, and the PST

was needed. We spun our wheels a lot and good, clear direction did not get provided until

late in the improvement project.

Suggestions moving forward

 Continue updating and bringing into compliance the documents we are keeping as part of our

process.

 Get internal view of web site completed.

www.manaraa.com

B.8 Second Wave Report 232

Planned activities through 2006
The final phase of the IDEAL model is the leveraging, or learning phase. The leveraging phase is

a time of critical reflection in which lessons learned during earlier phases are used to refine the

next software process improvement (SPI) cycles. In addition, we would like to evaluate the

impact of the SPI effort by conducting an assessment that can assist the PST in planning future

improvement initiatives.

An overview of the remaining SPI activities that will be conducted with GSU under this initial

contract:

 Continued focus on implementation. Need to bridge the gap between current and desired

implementation status of processes. We will especially concentrate on getting the process

management plan implemented.

 Assessment of current practice and the impact of SPI using the following techniques

o Survey for those internal to the software development group to allow complete

coverage.

o Interviews for representatives from software development, internal customers, and

external customers.

o Standardized requirements engineering assessment done by the PST

o Interviews with members of the Software Coordination Group (SCG) regarding

the group‟s process and overall effectiveness

 Create plan for 2007

Key Activities in Second Wave

Date Activity

April 18, 2006 Second Wave Kick-off Meeting

September 9, 2006 PST meets to provide initial baseline of Process

Documents

(see Baseline of Software Processes (9/11/2006))

September 29, 2006 Deliverables from each team due to PST

October 17, 2006 Planned meeting to report and celebrate results of SPI

initiative (Rescheduled)

November 8, 2006 Meeting to report and celebrate results of SPI initiative

November 29, 2006 First PST meeting using new Fixed Agenda

www.manaraa.com

B.8 Second Wave Report 233

Baseline of Software Processes (9/11/2006)

Policy Assessment

ID

Associated

Documentation

(See table below)

Policy Current Status Desired Status

1 31, 32, 33, 34, 35, 41, 1,

2. 28, 30, 3, 5, 17, 22, 23,

29, 39, 4, 27, 36, 37, 38

Professional Standards: TelSoft will strive to

operate based on the highest professional

standards and processes.

Normally used Normally used

2 5, 36, 37 Customer Knowledge: TelSoft will strive to

understand and incorporate its customers‟

business knowledge in our products.

Normally used Normally used

3 6, 20, 21, 25 Relationship Management: TelSoft will maintain

a proactive professional relationship to its

customers.

Discretionary Normally used

4 7 Two-phase Funding: TelSoft will manage each

development project with a two-phase approach

that separates requirement and development

activities.

Normally used Normally used

5 7, 14, 40 Requirements First: TelSoft will only engage

resources to start design and construction when

TelSoft has a baseline of identifiable and agreed

upon requirements.

Normally used Standardized

6 7, 8, 13, 26 Change Request: TelSoft will only engage

resources to address requirement change requests

that are documented, agreed upon and applied to

the requirements baseline

Discretionary

Standardized

7 9, 12, 20, 21, 25, 28, 29 Communicate Status: TelSoft will communicate

status to its customers of all active projects on a

regular basis.

Standardized Standardized

www.manaraa.com

B.8 Second Wave Report 234

ID

Associated

Documentation

(See table below)

Policy Current Status Desired Status

8 10, 11, 15, 16, 18, 19, 22 QA Approval: TelSoft will only deliver official

releases of software to a client with the written

approval of Quality Assurance.

Standardized Standardized

9 18, 19, 24, 38 Release Documentation: Each release of TelSoft

software will include documentation of all

changes and new features since the previous

release.

Discretionary Standardized

www.manaraa.com

B.8 Second Wave Report 235

Documentation Summary

ID
Processes, Templates, and

Standards

Customer

visibility

Related

Policies

Source

Documentation

status

Current

Implementation

Status

Desired

Implementation

Status

7** High Level Requirements

Specification (HLRS) Template

Now 4, 5, 6 Legacy Needs approval Discretionary

Discretionary

13** Change Control Template Now 6 First Wave Needs approval Discretionary Standardized

14** Functional Specification

Template

Now 5 First Wave Needs approval Normally used Standardized

6** Statement of Work template Now 3 Legacy Needs approval Standardized Standardized

11** Test Procedures Template Now 8 Legacy Needs Approval Standardized Standardized

20** Customer Project Status Report

Template

Now 7, 3 First Wave Needs revision

In progress In progress

10** Test Evaluation Report Template Now 8 Legacy Needs revision

Standardized Standardized

1 Risk Management Guidelines Never 1 Legacy Needs revision

Discretionary Discretionary

2 Risk Management Templates Never 1 Legacy Needs revision

Not used Discretionary

3 Software Development Process

Flow & Description

Later 1 Legacy Needs revision

Discretionary Normally used

4 Technical Specification Template Never 1 Legacy Needs revision

Discretionary Discretionary

5 Project Planning Process Flow &

Description

Later 1, 2 Legacy Needs revision

Normally used Normally used

8 Defect Management Guidelines Never 6 Legacy Needs revision

Discretionary Normally used

9 Project Tracking and Oversight

Guidelines

Later 7 Legacy Needs revision

Normally used Standardized

12 One-Page Status Report

Template

Never 7 Legacy Needs revision

Standardized Standardized

15 Regression Checklists Template Never 8 First Wave Needs approval In progress Normally used

www.manaraa.com

B.8 Second Wave Report 236

ID
Processes, Templates, and

Standards

Customer

visibility

Related

Policies

Source

Documentation

status

Current

Implementation

Status

Desired

Implementation

Status

16 Regression Testing Process Never 8 Second Wave Needs creation In progress Normally used

17 Software Coordination Group

Process

Later 1 Second Wave Needs creation Standardized Standardized

18 Software Release Specification

Template

Later 9, 8 First Wave Needs approval

Normally used Standardized

19 Software Release Specification

Process

Later 9, 8 Second Wave Needs approval

Normally used Standardized

21 Customer Email Standard Never 7, 3 Second Wave Needs revision

In progress In progress

22 Post Release Analysis Process Later 1, 8 Second Wave Needs creation In progress Normally used

23 Process Management Process

(including approving processes

and templates)

Later 1 Second Wave Needs creation In progress Standardized

24 Software Release Management

Process (including Packaging)

Later 9 Second Wave Needs creation Planned Planned

25 Website Management Process Never 7, 3 Second Wave Needs creation In progress Standardized

26 Change Control Process Later 6 Second Wave Needs creation Discretionary Standardized

27 JCS Activity Code Never 1 Legacy Approved Standardized Standardized

28 Microsoft project plan template Never 1, 7 Legacy Needs approval Discretionary Discretionary

29 Estimating procedures Never 1, 7 Legacy Needs revision Discretionary Discretionary

30 Project kick-off meeting sample

agenda

Later 1 Legacy Needs revision Discretionary Discretionary

31 C++ Coding Guidelines Never 1 Legacy Needs revision Normally used Standardized

32 Rexx Coding Guidelines Never 1 Legacy Needs revision Normally used Standardized

33 Java Coding Guidelines Never 1 Legacy Needs revision Normally used Standardized

34 VBA Coding Guidelines Never 1 Legacy Needs revision Normally used Standardized

35 Java User Interface

Rename: TelSoft GUI practices

Later 1 Legacy Needs revision Not used Standardized

36 Unit Testing Guidelines Never 2, 1 Legacy Needs revision Not used Normally used

www.manaraa.com

B.8 Second Wave Report 237

ID
Processes, Templates, and

Standards

Customer

visibility

Related

Policies

Source

Documentation

status

Current

Implementation

Status

Desired

Implementation

Status

37 Integration Testing Guidelines Never 2, 1 Legacy Needs revision

Not used Normally used

38 Software version numbering

scheme

Never 1, 9 Legacy Needs approval Standardized Standardized

39 Post Project Review Process Later 1 Second Wave Needs creation In progress In progress

40 Release Plan Template Later 5 Legacy Needs revision In progress Standardized

41 Java Error & Exception Handling

Guidelines

Never 1 Legacy Needs revision Normally used Standardized

42 Task Notes Never 1 Legacy Needs approval Discretionary Normally used

** Indicates documents that will be made visible on the company‟s website.

www.manaraa.com

 238

B.9: Employee Survey
1. Assessment of Software Process Improvement

This questionnaire is being used to assess the Software Process Improvement (SPI) initiative

which has been going on between TelSoft and Georgia State University (GSU) between

2004-2006. We are interested in your impressions regarding how the initiative was

organized as well as its impact. The survey should take less than 20 minutes to complete.

Your remarks will not be singled out by name. Instead, all results will be combined with all

others by GSU researchers and presented in a final report.

Do you wish to participate in this online survey?

a. Yes

b. No

Demographic Information

2. Enter your name for purposes of following up.

3. What profit center do you primarily work for?

a. Data Services (IDS)

b. Software (ISW)

c. Sales (ISL)

d. Other ___________________________________

4. What is your primary job responsibility?

a. Quality Assurance

b. Sales (Account Executive, Marketing)

c. Business Analyst

d. Engineer (Software, Software Applications)

e. Manager (e.g., Product, Project, Supervisor)

f. GIS Technician

g. Other ___________________________________

5. How long have you worked at TelSoft?

a. Less than 2 years

b. 2 - 7 years

c. 7 - 12 years

d. 12 - 17 years

e. More than 12 years

Your Role in Improvement Initiative

6. Please indicate your level of involvement with the collaboration between Georgia State

University (GSU) and TelSoft. Check all that apply.

a. Problem Solving Team member

www.manaraa.com

B.9 Employee Survey 239

b. Improvement team member

(e.g. Quality Results, Configuration management, Customer relations, etc.)

c. Software Coordination Group member

d. Attended workshop or kick-off meeting

e. None

7. Please indicate your role in each of the following improvement teams:

Team None Participant Project

Manager

Configuration Management
Customer Relations

Problem Solving Team
Process Management

Quality Assurance/Results
Requirements Management

Software Coordination Group

Overall Impact of Initiative

8. Overall, what has been the impact of the improvement initiative over the last 2 years?

a. Made things worse

b. No change

c. Some improvement

d. Considerable improvement

e. Don‟t know

9. Please explain your answer:

Policy Impact

10. For each policy, what is the impact on everyday practices at TelSoft?

Note: Click on link above for a reminder of policies from TelSoft website.

 Made things

worse

No change Some

Improvement

Considerable

Improvement

Don’t know

Professional

Standards

Customer

Knowledge

Relationship

Management

Two-phase

Funding

Requirements

First

Change Request

www.manaraa.com

B.9 Employee Survey 240

 Made things

worse

No change Some

Improvement

Considerable

Improvement

Don’t know

Communicate

Status

QA Approval

Release

Documentation

11. To what extent is each policy followed at TelSoft?

Note: Click on link above for a reminder of policies from TelSoft website.

 Not used

(<20%)

Discretionary

(<60%)

Normally

used

(<90%)

Standardized Don’t

know

Professional Standards
Customer Knowledge

Relationship

Management

Two-phase Funding

Requirements First
Change Request

Communicate Status
QA Approval

Release

Documentation

12. Optional area for commenting on policies:

Improvement Team Impact

13. What has been the impact of each of the specific initiatives done by the improvement teams

during the First Wave?

 Made things

worse

No change Some

Improvement

Considerable

Improvement

Don’t

know

Revised Functional

Specification template

Revised Change Control

template

Weekly Status Report Template

Software Release Specification
QA executes builds

www.manaraa.com

B.9 Employee Survey 241

14. What has been the impact of each of the specific initiatives done by the improvement teams

during the Second Wave?

 Made things

worse

No change Some

Improvement

Considerable

Improvement

Don’t

know

Refined QA process
Post Project Reviews

PDPR (Bug) Database

Cleanup

TelSoft Website update
Suggestion Box on

Website

Improved Client Product

packaging

Customer Contact

Database (ACT)

15. Optional area for additional comments regarding improvement team initiatives:

16. What is your perception regarding the amount of information provided about the

improvement initiative?

a. Not enough

b. Enough

c. Too much

17. What is your perception regarding your own level of participation the improvement

initiative?

a. Not enough

b. Enough

c. Too much

Open-ended Questions

18. List the 2-4 most important areas that still need to be improved.

19. List the 2-4 barriers that have limited the impact of the initiative.

20. List 1 - 3 suggestions for organizing future initiatives.

www.manaraa.com

 242

B.10: Learning Interview Guide
The objectives of the learning assessment are to evaluate SPI impact, organization, and

perception. Specific questions asked were tailored based on the person‟s stakeholder group, level

of involvement with the improvement initiative, and role and responsibilities within TelSoft. The

comprehensive bank of questions is included below.

SPI Impact
1. In the two years that we‟ve been working with TelSoft, what has been the overall impact

of the improvement initiative?

2. Can you provide specific examples of how the initiative has positively impacted

business?

3. How has the initiative impacted your day-to-day work?

4. How does this initiative compare with the prior CMM-based effort?

5. As we move forward, the PST is seeking advice on what was successful and what could

be improved. What activities would you like to see repeated? Where do you think the

PST should focus its efforts? What advice would you give to the PST moving forward?

6. Specific questions to ask about the improvement areas:

Area Issues Questions to ask

1. Software

vision

management

TelSoft strategy for software

development and customer service

should be explicated, maintained, and

communicated. This provides a value-

based foundation for requirements

coordination and management that is

consistent with TelSoft‟s business

strategy.

a. To what extent is the strategy

explicated, maintained, and

communicated in all levels of

the organization?

b. To what extent are the policies

explicated, maintained, and

communicated in all levels of

the organization?

2. Project

portfolio

management

TelSoft software project portfolio

should be managed explicitly and

coordinated across internal and

external stakeholders. This creates the

necessary dynamic capability to

respond effectively to different and

emerging customer and innovation

requests.

a. To what extent does TelSoft

effectively manage and

coordinate the project portfolio?

b. Can TelSoft respond

dynamically to different and

emerging customer requests?

c. Can TelSoft respond

dynamically to innovations?

3. Software

configuration

management

TelSoft software configuration

management should be improved to

ensure consistent and transparent

modification and packaging to

individual customers. This ensures

effective coordination with customers

and minimizes adverse effects across

projects.

a. Is the defined process for

generating software products for

external customers consistent?

b. Is the defined process for

packaging software for external

clients consistently followed?

www.manaraa.com

B.10 Learning Interview Guide 243

Area Issues Questions to ask

4. Customer

relations

management

TelSoft should improve its

management of customer relations to

ensure more symmetric information

sharing and proactive expectation and

change management. This leads to

increased customer satisfaction.

a. In what ways have customer

relations been improved?

b. Is their proactive

communication with customers?

c. Has customer satisfaction

improved?

5.

Requirements

management

TelSoft must improve the

transparency and consistency of

requirements change management as

well as the approach to specify

requirements. This lead to improved

efficiency, transparency throughout

the process, fewer errors, and

increased customer satisfaction.

a. Has requirements change

management been improved?

b. Has requirements specification

been improved?

6. Software

Quality

assurance

TelSoft must build a consistent and

systematic software quality assurance

process and commit people on all

levels to adopt it. This will lead to

early detection of errors, improved

efficiency, and increased customer

satisfaction.

a. In what ways has the QA

process been improved?

b. How has the quality of the

software product itself been

improved?

c. Measures of QA efficiency?

d. Number of errors detected?

e. Rework numbers?

7. End-user

interaction

TelSoft must establish closer

interaction between software

development and end-users. This will

lead to improved understanding of

requirements and to enhanced change

management in collaboration with

internal and external customers.

a. Amount of interaction with end-

users?

SPI Organization
Ask following questions about PST, SCG, and improvement teams:

1. What do you see as the underlying reason for having this team?

2. What is the main impact of this team?

3. How effective has this team been in managing its effort?

(For SCG: Specifically ask about each item on fixed agenda: current projects, business

opportunities, improvement initiatives, account review, and strategy)

4.

5. What changes could improve this team‟s effectiveness?

6. What is your long-term vision for this team? (PST and SCG only)

7. What goals should this team focus on in 2007? (PST and SCG only)

Additional questions for SCG members:

1. What role do the policies play in business decisions and everyday actions?

www.manaraa.com

B.10 Learning Interview Guide 244

2. What have you shared with your customers about policies and SPI? How do you think

this has been received?

SPI Perception
1. How do different stakeholders perceive the SPI initiative (e.g., cynicism, enthusiasm,

indifference)?

2. To what extent are those outside of the SPI initiative informed about the activity? Do

they need more or less information? What‟s the preferred form for this information (e.g.,

workshop, newsletter, email, website update, etc.)?

3. Are the workshops an effective medium for communicating about the project?

4. What has surprised you most about this SPI effort?

Open-ended Closing: Anything else you feel that I should know that I have not covered?

B.11: SPI Impact Results Summary
April 18, 2007

Overview
This report summarizes employee perspectives on the software process improvement

(SPI) initiative conducted between TelSoft and Georgia State University which began in

October 2004. Two sources of data were gathered:

 Interviews with selected members of the Software Development group

 Online questionnaire distributed via questionpro.com given to all members of the

Software Development group, marketing personnel, and select data services

people involved

The purpose of this report is to gather perceptions from a diverse set of employees

regarding the effectiveness of the SPI initiative and to gather suggestions for improving

any future initiatives.

SPI Impact
Table 1: Overall Improvement by Work Group

Status TOTAL Managers QA Sales Engineers Other

Made things

worse
0 0 0 0 0 0

No change 2 0 0 0 1 1

Some

improvement
13 4 2 2 3 2

Considerable

improvement
4 2 0 0 0 2

Don’t know 7 0 2 0 5 0

Total 26 6 4 2 9 5

www.manaraa.com

Software Development Assessment Summary

Table 2: Summary of Perceived Improvement

Area Overall Assessment

Software configuration management Considerable improvement

Software quality assurance Considerable improvement

Customer relations management Some improvement

Requirements management Little change

Software vision management Little change

End-user interaction No change

Project portfolio management No change

www.manaraa.com

Software Development Assessment Summary

Improvement Areas: Considerable Improvement

Software Configuration Management
Description: TelSoft software configuration management should be improved to ensure

consistent and transparent modification and packaging to individual customers. This ensures

effective coordination with customers and minimizes adverse effects across projects.

Strengths

1. New software release process is consistently followed and allows early problem detection.

 TelSoft now has documented process for building the following software products:

<Name withheld>

 Example provided during interview: VR used documentation to detect that an expected

file was missing from a release.

Table 3: Questionnaire items related to release process
Area Impact TOTAL Mgr QA Sales Eng Oth

Impact of

Software

Release

Specification

Made things worse

No change

Some improvement

Considerable improvement

Don‟t know

0

2

7

6

11

0

0

2

5

0

0

0

1

1

2

0

0

0

0

2

0

1

3

0

5

0

1

1

1

2

Impact on

Practice:

Policy on

Release

Documentation

Made things worse

No change

Some improvement

Considerable improvement

Don‟t know

0

1

7

7

11

0

0

2

4

0

0

1

0

1

2

0

0

0

0

2

0

0

3

0

6

0

0

2

2

1

Extent to which

policy on

Release

Documentation

is followed

Not used

Discretionary

Normally used

Standardized

Don‟t know

1

1

7

7

10

0

0

3

3

0

0

1

0

2

1

0

0

0

0

2

1

0

2

0

6

0

0

2

2

1

2. Improved product packaging to customers reflects more professional image. The initiative

raised awareness of importance of maintaining a professional image with all documents sent

to customer

Table 4: Questionnaire items related to product packaging
Area Impact TOTAL Mgr QA Sales Eng Oth

Impact of

improved client

product packaging

Made things worse

No change

Some improvement

Considerable improvement

Don‟t know

0

1

2

12

9

0

0

0

3

3

0

0

1

1

1

0

0

0

1

0

0

1

1

2

5

0

0

0

5

0

www.manaraa.com

Software Development Assessment Summary

Area Impact TOTAL Mgr QA Sales Eng Oth

Impact on

Practice:

Policy on

professional

standards

Made things worse

No change

Some improvement

Considerable improvement

Don‟t know

0

2

13

0

11

0

2

4

0

0

0

0

1

0

3

0

0

0

0

2

0

0

3

0

6

0

0

5

0

0

Extent to which

policy on

professional

standards is

followed

Not used

Discretionary

Normally used

Standardized

Don‟t know

0

4

10

0

12

0

1

4

0

1

0

0

2

0

2

0

0

0

0

2

0

2

1

0

6

0

1

3

0

1

Opportunities

Respondent identified the following specific opportunity:

 Need better documentation for impact of PVCS merge. Something more specific than

“there‟s been a merge so test everything.” I would assume this comment is a result of

merging <specific product> to trunk. That merge was an exception to what typical merges

entail, normal impact statement practices will address most merge situations since branches

usually have a relatively limited lifespan.

Software Quality Assurance
Description: TelSoft must build a consistent and systematic software quality assurance process

and commit people on all levels to adopt it. This will lead to early detection of errors, improved

efficiency, and increased customer satisfaction.

Strengths

The policy requiring quality assurance (QA) group to execute builds has been strictly followed

and is very positively perceived. Selected comments from respondents include:

 “QA doing builds means they can trust the integrity of the builds”

 “I do see much improvement in quality assurance and that entire process - more

standardized than what we had done previously and with QA doing builds it has forced us

to document all our build and deployment processes + document release specifications.”

Table 5: Questionnaire items related to quality assurance
Area Impact TOTAL Mgr QA Sales Eng Oth

Impact of QA

executes build

(First Wave)

Made things worse

No change

Some improvement

Considerable improvement

Don‟t know

0

2

8

7

9

0

0

2

4

0

0

0

2

1

1

0

0

0

0

2

0

2

3

0

4

0

0

1

2

2

Impact of

Refined QA

process (Second

Wave)

Made things worse

No change

Some improvement

Considerable improvement

Don‟t know

0

2

9

3

11

0

1

1

2

2

0

1

2

0

0

0

0

0

0

2

0

0

4

0

5

0

0

2

1

2

www.manaraa.com

Software Development Assessment Summary

Area Impact TOTAL Mgr QA Sales Eng Oth

Impact on

Practice:

Policy on QA

Approval

Made things worse

No change

Some improvement

Considerable improvement

Don‟t know

0

0

10

7

9

0

0

3

3

0

0

0

1

2

1

0

0

0

0

2

0

0

3

0

6

0

0

3

2

0

Extent to which

policy on QA

Approval is

followed

Not used

Discretionary

Normally used

Standardized

Don‟t know

0

1

8

8

9

0

1

2

3

0

0

0

1

2

1

0

0

0

0

2

0

0

2

1

6

0

0

3

2

0

Opportunities

Many respondents pointed to integration testing as an area needing improvement. The main

issues appear to be

 Lack of policies or guidelines provided for integration testing; therefore, quality

varies greatly according to who does it.

 Belief that someone other than developer should conduct integration testing.

Other indicators of issues with integration testing:

 Quality of the software coming from integration QA is not as good as it used to be.

Used to take 3 cycles to get a release out the door. Last release, it took 5-6 cycles.

Selected comments

 “Integration testing - I know not on the list, but perhaps it should be. Having

developers test their own stuff in integration is no better than unit testing.”

 “Development is doing more integration testing. Developers would rather stick with

doing development. I would rather have another group do integration testing and have

developer stick with design, consult and development.” Seems like we need to

formalize some guidelines here.

Improvement Areas: Some Improvement

Customer Relations Management
Description: TelSoft should improve its management of customer relations to ensure more

symmetric information sharing and proactive expectation and change management. This leads to

increased customer satisfaction.

Strengths

Project managers are spending more face-to-face time with BST and EMBARQ. As a

consequence, the relationship with BellSouth has improved. The relationship with EMBARQ has

remained strong. In addition, the software charterSoftware Charter (reason for being, strategy,

and policies) have been communicated to customers via letter and, in some case, in person.

Selected comments from questionnaire:

 “Much less squawking from employees and customers.”

www.manaraa.com

Software Development Assessment Summary

 “Customer relations efforts - more focus on face/face and client communication

channels; also presentation of our software has also improved - looks more

professional now.”

Table 6: Questionnaire items related to customer relations
Area Impact TOTAL Mgr QA Sales Eng Oth

Impact of Weekly

Status Report

template (First

Wave)

Made things worse

No change

Some improvement

Considerable improvement

Don‟t know

1

6

5

1

12

0

2

2

0

2

0

0

1

0

2

0

0

0

0

2

0

3

0

0

6

0

1

1

0

3

Impact of TelSoft

website update

(Second Wave)

Made things worse

No change

Some improvement

Considerable improvement

Don‟t know

0

4

9

3

9

0

2

1

1

2

0

0

2

0

1

0

0

2

0

0

0

1

1

1

6

0

1

3

1

0

Impact on

Customer Contact

Database (ACT)

Made things worse

No change

Some improvement

Considerable improvement

Don‟t know

0

5

3

0

16

0

2

0

0

4

0

0

0

0

3

0

1

0

0

0

0

0

1

0

8

0

2

2

0

1

Extent to which

policy on

Communicate

Status is followed

Not used

Discretionary

Normally used

Standardized

Don‟t know

0

5

5

3

13

0

3

2

0

1

0

0

1

0

3

0

0

0

0

2

1

1

2

0

5

0

1

3

0

1

Extent to which

policy on

Relationship

Management is

followed

Not used

Discretionary

Normally used

Standardized

Don‟t know

0

5

7

0

14

0

0

3

0

3

0

1

1

0

2

0

1

0

0

1

0

1

1

0

7

0

2

2

0

1

Extent to which

policy on

Customer

Knowledge is

followed

Not used

Discretionary

Normally used

Standardized

Don‟t know

1

4

4

1

16

0

2

2

0

2

0

0

2

0

2

0

0

2

0

0

0

0

0

1

8

0

2

2

0

1

Opportunities

Comments from questionnaire on barriers to success:

 “Still think we don't understand our customer's business”

 “Business knowledge, impact on business of relationship (customer) management”

 “Small customer and personnel base, few new projects to implement and refine new

processes.”

www.manaraa.com

Software Development Assessment Summary

Improvement Areas: Little Change

Software Vision Management
Description: TelSoft strategy for software development and customer service should be

explicated, maintained, and communicated. This provides a value-based foundation for

requirements coordination and management that is consistent with TelSoft‟ business strategy.

Strengths

The creation of the software charterSoftware Charter (reason for being, software strategy, and

policies) was one of the primary ways of enhancing software vision management. Some

successes in this area:

 TelSoft has educated Local TelCo regarding the two-phased funding policy and received

agreement to operate this way.

 TelSoft has mapped out release schedule for products in a more collaborative way.

Note: A more detailed assessment of the software coordination group activities has been

compiled separately.

Opportunities

Increase visibility of policies for both new and existing employees:

 “More knowledge of United Way campaign than company‟s vision and policies.”

 Need to ensure that new hires will see the policies and be informed about processes

Reconsider TelSoft‟ real strategy, particularly with respect to emerging markets and new

customers:

 “We came up with the reason for being, but it‟s not necessarily a driving force. The

actual product strategy is not solidified and communicated.”

 “Too few resources to adequately respond to new technologies or customers”

 “TelSoft has suffered due to poor overall business environment & national economy -

very intense foreign competition - high level of mergers & acquisitions among customer

base delayed or even halted many purchases of TelSoft products and services.”

Requirements Management
Description: TelSoft must improve the transparency and consistency of requirements change

management as well as the approach to specify requirements. This lead to improved efficiency,

transparency throughout the process, fewer errors, and increased customer satisfaction.

Strengths

For internal projects, TelSoft is doing a better job of documenting requirements than they would

have done it before.

Opportunities

Functional specification:

 Functional specification (FS) is now too streamlined for development and QA. Recent FS

have had “lots of holes” and had to be rewritten by development.

www.manaraa.com

Software Development Assessment Summary

 Many inadequacies with FS are caught during design time. Since technical specifications

(TS) are not frequently done, we catch these later and later in the process.

 Functional specification should always be reviewed by development before being sent to

client. All three above continue to be issues. FS really need to be more fully fleshed out

than they have been. As of late we are seeing some “requirements” in the FS being

implied through screenshots and examples instead of being spelled out. This leaves the

developer having to analyze the data in the screen shots to figure out what they need to

implement. In a current project we are almost a month into the project, and did not have

a finalized data base schema. The common pattern appears to be that more of the FS that

aren‟t fully fleshed out are internal projects. Something that PM has done in the past is to

get development involved in discovery sessions prior to completion of the FS, I believe

this worked well in determining what is and is not possible. This is something that I

would like to see more of.

 “We don't have any true business analyst's left in the group

Change controls are still not consistently communicated for internal projects.

Suggested Improvement Areas
1. Scheduling

a. Development needs input on estimates rather than being provided a date. Potential

impact to code and likely problems that will be encountered may also be known by

the developers. This knowledge might lead to additional items being added to the

work program.

b. Suggestion: Since PM schedules resources upfront, she could apply a rule that

developers do not test their own work. While I generally agree that a developer

really shouldn‟t integration test their own work, I would not go as far as to say that is

should never happen. Every effort should be made to avoid the situation, but

sometime it may be necessary schedule wise to do this.

c. Include time for process improvement in the schedule to adjust workload. When a

person is assigned to an improvement team, add time for participating on that team

into schedule; otherwise, the person may be overloaded with day-to-day work

activities and not have the time to focus on improvement.

2. Project management

a. Setup a standard protocol for managing TelSoft projects. Currently there is no

consistency or quality control on how projects are managed

b. Increased managerial intervention

c. Consistency of project management between managers

d. Project Management Process and Tools

e. Estimation process and accuracy.

3. Communication

a. “I am aware that some of the initiatives are in place but since they don't directly affect

me that is all I can say about them.”

b. Developers are having to communicate status and answer to too many managers

www.manaraa.com

Software Development Assessment Summary

c. Communication between managers and 'workers'.

Communication between upper management and 'workers'

d. In order to be effective, the goals of each aspect of the program need to be

communicated to the rank and file and then implemented from the top down.

4. Resources

a. Lack of resources - no business analysts on staff for example

b. It seemed that a lack of resources may have been a factor. Low morale because of a

lack of work was also a factor.

c. Small workforce.

5. Implementation and refinement of designed initiatives

a. PDPR database cleanup and standardization of statuses

b. Get release documentation a little more consistent (currently it varies by PM)

c. Approve documents pending approval/revision.

SPI Organization

Strengths
1. Full support of management, including willingness to enforce process changes

2. Joint effort. Participatory – involved the right people who would also be responsible for

making the changes. Committed team members who genuinely wanted to improve the

processes.

a. “I think it was good to use a fresh approach and get more people involved. The

various teams did a good job.”

b. “Increased the level communication, awareness, and understanding among the groups

involved in the initiative/project - Provided opportunities for discussions focused on

fundamental business issues among groups that don't normally/frequently work

together”

3. Improved processes

a. “Processes are better understood and more consistently followed.”

b. “Has had a positive impact on establishing firm processes for product packaging and

QA/QC authority over product releases.”

c. “I have seen some serious improvement in how we handle releases. QA is doing a

nice job.”

4. Legitimized the topic of process improvement

a. PST: “If you didn‟t have the group, you wouldn‟t have anyone that looked at

improvement. The improvement focus could get lost in the hectic pace of the day”

b. I think people are at least more in tune to the fact that process is important. I think

having QA do the builds has been a positive improvement for one specific example.”

c. “We did "QA Does Builds" effort and a number of other improvements to our process

and people think critically about our processes more now as a result of attention to

these issues.”

Opportunities
1. Improvement team organization

www.manaraa.com

Software Development Assessment Summary

a. Difficulty in people having enough time to do work in between meetings.

b. Might have been more productive to have the time compressed (e.g. 1 ay/week for 3

weeks instead of 24 hours over 6 weeks): “We could all just sit in a room for a few

days to get it done. Constant bantering back and forth every few weeks wasn‟t

productive.” “I would have preferred more time in a shorter period instead of

dragging it out over months”

c. Teams need more direction and feedback from PST throughout the process.

Suggestion: have the person who came up with the specific issue be present when the

improvement team first meets in order to clarify things.

d. Smaller teams, less time - I'm concerned about the number of hours spent on this

whole initiative vs. what was actually gained; 2-3 hour kickoffs and other meetings

w/15 people seems excessive////strip that down and cut out much of the presentations

- we simply can't spare that much time away from project activities!

2. Increase participation and involvement.

a. Broaden participation in the initiative (e.g. only one member of Rick‟s group

participated on a team)

b. Not only start from Top levels, also need work from bottom-up.

c. “Some people just had the experience of having final results presented to them; they

were not really participants even though they may have wanted to be.”

d. “Only people it‟ll be meaningful to are the ones that were on the team.”

e. Follow model of first workshop where there was more of an open dialogue instead of

just one-way communication.

f. “I have not been involved enough in these initiatives to know how they are or should

be impacting the company. However, that does not speak well for this program being

implemented below the managerial level.” (questionnaire response)

3. PST

a. Consider rotating non-management level people onto the PST Good idea this would

also help with 2 above, with the key being selecting the non-management types that

would not resent being on the panel.

b. As PST becomes focused on document revisions, need to still keep engaging “larger

part of the audience”

4. Close communication gaps

a. “I think things will happen, but folks won‟t know”

b. Newsletters or emails about what‟s happening would be excellent – could even

replace the need for status workshops

c. Consider sharing news about business opportunities with people outside of SCG and

management

d. Implementation - I am aware of items that directly affect me with regards to

implementation of initiatives, but I answered don't know to most of the questions on

implementing the initiatives because we either haven't done them yet, or I am simply

unaware that we have done things.

e. Consider doing interviews or surveys annually. Might even do it more often (no more

than bi-annually.)

f. Perception of amount of information provided about the improvement initiative: 19

out of 26 said enough. 7 out of 26 said Not Enough

www.manaraa.com

Software Development Assessment Summary

g. What is your perception regarding your own level of participation the improvement

initiative? 19 out of 26 said enough. 7 out of 26 said Not Enough

5. Finish what we started

a. PDPR bug cleanup

b. Post-project reviews represent a big opportunity for learning

c. “Implementation is slow, and following procedures is somewhat sporadic at times as

we phase into some of the initiatives.”

d. Slow things down somewhat - we probably really need to fully implement the

initiatives prior to moving on to another round. Or I guess you could also say speed

things up on the implementation. To be fair though we really need to have some

projects completed or nearing completion to implement some items.

e. “Seems like business as usual. Although we now have some thing concrete to point

to in support of the way we do things.”

f. “I'm not convinced all initiatives have been fully implemented; for instance, I haven't

seen any cleanup of the PDPR database. I never saw the email policies published.

Etc”

g. “A lot of work went in to the web site, but I'm not sure it bought us any thing.”

h. “Some [initiatives] appear dead or have no clear direction and/or funding”

www.manaraa.com

 255

B.12: Requirements Engineering Assessment Results
7/17/2007

This document shows the results of the latest Requirements Assessment conducted on June 19,

2007. The values are compared against a similar assessment that was conducted on March 2005.

Major findings:

 TelSoft‟s overall Requirements Maturity increased from Initial to Repeatable (comparing

Tables 1 & 2).

 TelSoft increased the % of best practices used in 6 of the 8 areas (comparing Tables 3 & 4).

 TelSoft improved all of its Weak areas to Average (Table 5).

Table 1: Strength Matrix (Pre=3/30/2005; Post=6/19/2007)

Area Weak Average Good Strong

Requirements Document
Pre

Post

Requirements Elicitation Pre Post

Requirements Analysis and Negotiation Pre Post

Describing Requirements
Pre

Post

System Modeling Pre Post

Requirements Validation Pre Post

Requirements Management Pre Post

Requirements Engineering for Critical Systems
Pre

Post

The four area strength parameters are used as follows:

 Weak 0<= % Usage <= 30

 Average 30< % Usage <= 50

 Good 50< % Usage <= 70

 Strong 70< percentage <= 100

Scores

 Standardized (ST, 3): The process or practice has a documented standard which is

followed and checked as part of your quality management process.

 Normal (N, 2): Guideline is widely followed in your organization but is not mandatory

 Discretionary (D, 1): Some project managers may have introduced the guideline but it is

not universally used

 Rare (R, 0): Never or very rarely applied

www.manaraa.com

RE Assessment Results 256

Table 2: Scores for basic guidelines

ID Guideline
Score

(3/30/05)

Score

(6/19/05)

03.01 Define a standard document structure 3 3

03.02 Explain how to use the document 0 3

03.03 Include a summary of the requirements 3 3

03.04 Make a business case for the system 3 2

03.05 Define specialized terms 3 3

03.06 Lay out the document for readability 3 3

03.07 Help readers find information 3 3

03.08 Make the document easy to change 1 3

04.01 Assess system feasibility 1 1

04.02 Be sensitive to organizational and political considerations 0 1

04.03 Identify and consult system stakeholders 1 2

04.04 Record requirements sources 1 2

04.05 Define the system's operating environment 0 3

04.06 Use business concerns to drive requirements elicitation 0 3

05.01 Define system boundaries 0 1

05.02 Use checklists for requirements analysis 0 0

05.03 Provide software to support negotiations 2 2

05.04 Plan for conflicts and conflict resolution 1 2

05.05 Prioritise requirements 0 0

06.01 Define standard templates for describing requirements 0 3

06.02 Use language simply, consistently and concisely 1 1

06.03 Use diagrams appropriately 2 1

06.04
Supplement natural language with other descriptions of

requirements
1 2

07.01 Develop complementary system models 1 0

07.02 Model the system's environment 1 1

07.03 Model the system architecture 0 2

08.01 Check that the requirements document meets your standards 0 0

08.02 Organize formal requirements inspections 0 3

08.03 Use multi-disciplinary teams to review requirements 3 3

08.04 Define validation checklists 0 0

09.01 Uniquely identify each requirement 3 3

09.02 Define policies for requirements management 0 3

www.manaraa.com

RE Assessment Results 257

ID Guideline
Score

(3/30/05)

Score

(6/19/05)

09.04 Maintain a traceability manual 0 0

 Score 37 62

Table 3: Scores for intermediate guidelines

ID Guideline
Score

(3/30/05)

Score

(6/19/05)

04.07 Look for domain constraints 3 3

04.08 Record requirements rationale 2 0

04.09 Collect requirements from multiple viewpoints 2 1

04.10 Prototype poorly understood requirements 1 0

04.11 Use scenarios to elicit requirements 1 3

04.12 Define operational processes 1 2

05.06 Classify requirements using a multi-dimensional approach 0 0

05.07 Use interaction matrices to find conflicts and overlaps 0 0

06.05 Specify requirements quantitatively 2 2

07.04 Use structured methods for system modeling 0 0

07.05 Use a data dictionary 0 3

07.06
Document the links between stakeholder requirements and

system models
0 0

08.05 Use prototyping to animate requirements 0 0

08.06 Write a draft user manual 1 0

08.07 Propose requirements test cases 0 1

09.03 Define traceability policies 0 0

09.05 Use a database to manage requirements 0 1

09.06 Define change management policies 0 3

09.07 Identify global system requirements 1 0

 Score 14 19

Table 4: Scores for advanced guidelines

ID Guideline
Score

(3/30/05)

Score

(6/19/05)

04.13 Reuse requirements 0 1

05.08 Assess requirements risks 0 0

08.08 Paraphrase system models 0 0

09.08 Identify volatile requirements 0 0

09.09 Record rejected requirements 0 0

 Score 0 1

www.manaraa.com

RE Assessment Results 258

Table 5: Assessment Summary (3/30/2005)

 Basic Intermediate Advanced

Guidelines Used 19 9 0

Weighted Score 37 14 0

Maximum Possible 105 66 27

Score % of Maximum 35% 21% 0%

Level Initial

Table 6: Assessment Summary (6/19/2005)

 Basic Intermediate Advanced

Guidelines Used 27 9 1

Weighted Score 62 19 1

Maximum Possible 105 66 27

Score % of Maximum 59% 29% 4%

Level Repeatable

Assignment of maturity level used the following scale (Sommerville and Sawyer 1997):

 Initial: Less than 55 in the basic guidelines. May have implemented some intermediate

guidelines

 Repeatable: Above 55 in the basic guidelines but less than 40 in the intermediate and

advanced guidelines

 Defined: More than 65 in the basic guidelines and more than 40 in the intermediate and

advanced guidelines

Table 7: Guideline Usage Summary (3/30/2005)

 03 04 05 06 07 08 09 10

Guideline counts 7 9 2 4 2 2 2 0

Maximum 8 13 8 5 6 8 9 9

% Usage 88 69 25 80 33 25 22 0

Table 8: Guideline Usage Summary (6/19/2007)

 03 04 05 06 07 08 09 10

Guideline counts 8 11 3 4 3 3 4 0

Maximum 8 13 8 5 6 8 9 9

% Usage 100 85 38 80 50 38 45 0

www.manaraa.com

RE Assessment Results 259

References

Abrahamsson, P., O. Salo, et al. (2002). Agile Software Development Methods – Review and

Analysis. Oulu, VTT Electronics.

Baskerville, R. and T. Wood-Harper (1996). "A Critical Perspective on Action Research as a

Method for Information Systems Research." Journal of Information Technology 11: 235-

246.

Borjesson, A. and L. Mathiassen (2005). "Improving software organizations: agility challenges

and implications." Information Technology & People 18(4): 359-382.

CMMI Product Team (2002). CMMI for Systems Engineering/Software Engineering/Integrated

Product and Process Development/Supplier Sourcing, Software Engineering Institute.

Davison, R. M., M. G. Martinsons, et al. (2004). "Principles of canonical action research."

Information Systems Journal 14(1): 65-86.

Dove, R. (2001). Response Ability: the Language, Structure, and Culture of the Agile Enterprise.

New York, Wiley.

Gunneson, A. O. (1997). Transitioning to Agility – Creating the 21
st
 Century Enterprise.

Reading, MA, Addison-Wesley.

Haeckel, S. (1995). "Adaptive enterprise design: the sense-and-respond model." Planning

Review 23(3): 6-13, 42.

Haeckel, S. (1999). Adaptive Enterprise: Creating and Leading Sense-and-Respond

Organizations. Boston, MA, Harvard Business School Press.

Kock, N. (1997). "Negotiating mutually satisfying IS action research topics with organizations:

an analysis of Rapoport's initiative dilemma." Journal of Workplace Learning 9(7): 253-

62.

Mathiassen, L. (2002). "Collaborative practice research." Information Technology & People

15(4): 321-345.

McFeeley, B. (1996). IDEAL: A user's guide for software process improvement. Pittsburgh, PA,

Software Engineering Institute.

McKay, J. and P. Marshall (2001). "The dual imperatives of action research." Information

Technology & People 14(1): 46-59.

Napier, N. P., J. Kim, et al. (under review). "Software Process Reengineering: A Model and Its

application to an industrial case study." IEEE Transactions on Software Engineering.

Napier, N. P., L. Mathiassen, et al. (2006). Perceptions and Processes in assessing software

requirements practices. Proceedings of the Twelfth Americas Conference on Information

Systems, Acapulco, Mexico.

Overby, E., A. Bharadwaj, et al. (2006). "Enterprise agility and the enabling role of information

technology." European Journal of Information Systems 15(2): 120-131.

Paulk, M., B. Curtis, et al. (1993). Capability Maturity Model for Software, Version 1.1.

Pittsburgh, PA, Software Engineering Institute.

Paulk, M., C. V. Weber, et al., Eds. (1995). The Capability maturity model: guidelines for

improving the software process. SEI Series in Software Engineering. Boston, Addison-

Wesley.

Rapoport, R. (1970). "Three Dilemmas in Action Research." Human Relations 23(6): 499-513.

www.manaraa.com

RE Assessment Results 260

Sommerville, I. and J. Ransom (2005). "An empirical study of industrial requirements

engineering process assessment and improvement." ACM Transactions on Software

Engineering and Methodology 14(1): 85-117.

Sommerville, I. and P. Sawyer (1997). Requirements Engineering: A Good Practice Guide. New

York, NY, John Wiley & Sons.

Zaheer, A. and S. Zaheer (1997). "Catching the Wave: Alertness, Resposiveness and Market

Influence in Global Electronic Networks." Management Science 43(11): 1493-1509.

	Georgia State University
	ScholarWorks @ Georgia State University
	12-5-2007

	Improving Practices in a Small Software Firm: An Ambidextrous Perspective
	Nannette Napier
	Recommended Citation

	Part I: Research Summary

